Home » Posts tagged 'preplant'

Tag Archives: preplant

ABOUT ME

osunpk

osunpk

Since 2008 I have served as the Precision Nutrient Management Extension Specialist for Oklahoma State University. I work in Wheat, Corn, Sorghum, Cotton, Soybean, Canola, Sweet Sorghum, Sesame, Pasture/Hay. My work focuses on providing information and tools to producers that will lead to improved nutrient management practices and increased profitability of Oklahoma production agriculture

View Full Profile →

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 3,502 other followers

Now may not be the time for Replacement

For phosphorus (P) and potassium (K) fertilizer management there are three primary schools of thought when it comes to rate recommendations. The three approaches are Build-up, Maintenance/Replacement, and Sufficiency. There is a time and place for each one of the methods however the current markets are making the decision for the 2016-16 winter wheat crop a very easy one. The OSU factsheet PSS-2266 goes in-depth on each of these methods. For the rest of the blog I will use P in the conversation but in many scenarios K should/could be treated the same.

Build-up is when soil test is below a significant amount of fertilizer, about 7.5 lbs P2O5 per 1 ppm increase, is added so that soil test values increase.  This method is only suggested when grain price is high and fertilizer is relatively cheap.  Given the market, this is a no go.  The two most commonly used methods of recommendation are Replacement and Sufficiency. In the replacement approach if the soil is at or below optimum P2O5 rate it based upon replacing what the crop will remove. The sufficiency approach uses response curves to determine the rate of P that will maximize yield. These two values are typically quite different.  A good way you boil the two down is that replacement feeds the soil and sufficiency feeds the plant.

Oklahoma State Universities Soil, Water, and Forage Analytical Lab (SWFAL) provides recommendations utilizing sufficiency only while many private labs and consultants use replacement or a blended approach.  Some of this is due to region.  Throughout the corn belt many lease agreement contain clauses that the soil test values should not decrease otherwise the renter pays for replacement after the lease is over. For the corn belt both corn and soybean can be expected to remove 80 to 100 pounds of P per year.  Conversely the Oklahoma state average wheat crop removes 17 lbs P a year.  In areas where wheat yields are below 40 bushel per acre (bpa) using the sufficiency approach for P recs can increase soil test P over time.

This conceptual soil test response curve is divided into categories that correspond with below opti-mum, optimum and above optimum soil test values. The critical level is the soil test level, below which a crop response to a nutrient application may be expected, and above which no crop response is expected. At very high soil test levels crop yield may decrease. *Rutgers Cooperative Extension Service FS719

This conceptual soil test response curve is divided into categories that correspond with below opti-mum, optimum and above optimum soil test values. The critical level is the soil test level, below which a crop response to a nutrient application may be expected, and above which no crop response is expected. At very high soil test levels crop yield may decrease.
*Rutgers Cooperative Extension Service FS719

Back to subject of this blog, consultants, agronomist, and producers need to take a good look at the way P recs are being made this year.  Profitability and staying in the black is the number 1, 2, and 3 topic being discussed right now.  The simple fact is there is no economic benefit to apply rate above crop need, regardless of yield level. The figures above demonstrate both the yield response to fertilizer based upon soil test. At the point of Critical level crop response / increase in yield is zero. What should also be understood is that in the replacement approach P fertilizer is still added even when soil test is in Optimum level.  This also referred to as maintenance, or maintaining the current level of fertility by replacing removal. If your program is a replacement program this is not a recommendation to drop it completely. Over a period of time of high removal soil test P levels can and will be drawn down. But one year or even two years of fertilizing 100 bpa wheat based on sufficiency will not drop soil test levels. On average soils contain between 400 and 6000 pounds of total phosphorus which in the soil in three over arching forms plant available, labile, and fixed. Plant available is well plant available and fixed is non plant available.  The labile form is intermediate form of P.  When P is labile it can be easily converted to plant available or fixed. When a plant takes up P the system will convert labile P into available P. When we apply P fertilizer the greatest majority of was is applied makes it to the labile and fixed forms in a relatively short period of time.  For more in-depth information on P in the soil you can visit the SOIL 4234 Soil Fertility course and watch recorded lectures Fall 2015 10 26-30 Link .

How to tell if your P recs have a replacement factor, not including calling your agronomist. First replacement recs are based on yield goal, so if you change your yield goal your rate will change.  The other and easier way is to compare your rates to the table below.  Most of the regional Land Grant Universities have very similar sufficiency recs for wheat.  Another aspect of the sufficiency approach is the percent sufficiency value itself.  The sufficiency can provide one more layer in the decision making process for those who are near the critical or 100% level.  Response and likelihood of response to P is not equal. At the lowest levels the likelihood of response is very high and the yield increase per unit of fertilizer is the greatest. As soil test values near critical (32.5 ppm or 65 STP) the likelihood of response and amount of yield increase due to fertilizer P decreases significantly.  At a STP of 10 the crop will only produce 70% of its environmental potential if P is not added while at a STP of 40 the crop will make 90% of its potential.  The combination of % sufficiency and yield goal can be used to determine economic value of added P.

*Oklahoma State University Soil Test Interpretations. PSS-2225 *Mehlich 3 and Bray P are similar *PPM (parts per million) is used by most labs *STP (soil test P) is a conversion used by some Universities. Equivalent to pounds per acre. * for a 0-6” in soil sample PPM * 2 = STP.

*From Oklahoma State University Soil Test Interpretations. Fact Sheet PSS-2225
*Based on Mehlich 3
*PPM (parts per million) is used by most labs
*STP (soil test P) is a conversion used by some Universities. Equivalent to pounds per acre.
* for a 0-6” in soil sample PPM * 2 = STP.

This data is available from OSU in multiple forms from the Factsheet PSS-2225, the SWFAL website, Pete Sheets quick cards, and the Field Guide App.

soapbox_ST

This year with margins tight soil testing is more important than ever before.  Knowing the likelihood of response and appropriate amount of fertilizer to apply will be critical maximizing the return on fertilizer invest while maximizing the quality and amount of grain we can produce.  Visit with your consultant or agronomist to discuss what the best approach is for your operation. Lets ride this market out, get the most out of every input and come out of this down cycle strong.

Feel free to contact me with any questions you may have.
Brian
b.arnall@okstate.edu

 

2015-16 Wheat Crop Nitrogen Review

From trials to phone calls (and text messages, and tweets, and ect. ect) I have gathered a fairly good picture of this years winter wheat nitrogen story.  And as normal, nothing was normal.  Overall I seen/heard three distinct trends 1) Did not take much to make a lot 2) took a ton to make a lot 3) saw a response (N-rich strip or cow-pow) but fertilizer never kicked in. Covers most of the options, doesn’t it.

P1000542

The N-rich strips really came out over all very good this year.  N-Rich Strip Blog. On average many of those using the N-Rich Strip and SBNRC (SBNRC Blog) producers have been getting in the neighborhood of 1.0-1.3 lbs of N applied per bushel produced.  This year the numbers ran from 0.66 to 2.3 lbs of N per bushel.  In both extremes I believe it can be explained via the field history and the N-Cycle.

N-Cycle

Nitrogen Cycle Pete’s Sheet

In at least two fields, documented with calibrated yield monitors, the N-Rich Strip and SBNRC lead to massive yields on limited N. One quarter of IBA bumped 86 bpa average on 47 lbs of N while a second quarter, also IBA, managed 94 bpa average on about 52 units of N. We are currently running grain samples from these fields to look protein levels.

The other side of the boat were those with N-Rich strip calling for +2.0 lbs N per bushel.  I had received notes from producers without N-rich strips saying that they could predict yield based on the amount of N applied and it was a 2 to 1 ratio.  Not always but many of these high N demand fields where wheat following a summer or double crop or corn or sorghum. While many of the low N demand fields were wheat after wheat or wheat after canola. In a rotational study that had been first implemented in the 2014-15 crop year I saw big differences due to previous crop.  The picture below was taken in early March.  The straw residue in wheat after wheat had just sucked up the nitrogen.  While it was evident the residue from the canola broke down at a much more rapid pace releasing any and all residual nutrients early.

Rotation

The yield differences were striking. The canola rotation benefited the un-fertilized plots by 22 bpa and even with 90 lbs of N applied having canola in the rotation increased yields by 12 bpa.  We are looking and grain quality and residual soil sample now. I am sure there will be a more indepth blog to follow.

Canola Wheat Rotation study year two yield average. yields average across previous years N-rates.

Canola Wheat Rotation study year two yield average. yields average across previous years N-rates.

Another BIG story from the 2015-16 wheat crop was the lack of benefit from any N applied pre-plant. It really took top-dress N this year to make a crop.  Due to our wet early fall and prolong cold winter N applied pre was either lost or tied up late.  Work by Dr. Ruans Soil Fertility Program really documented the lack luster pre-plant N effect. The figure below shows 4 location of a rate by timing student.  The number at the bottom of each graph is a rate by time (30/0 means 30 lbs Pre-0 lbs Top, 60/30 means 60 lbs Pre-30 lbs Top).  At every single location 0/60 beat 60/0. Top-dress N was better than Pre-plant N.

Driver_Raun

Figure 1. Work from Ethan Driver and Dr. Bill Raun. Study looked at rate and timing of N fertilization in wheat. Treatments are ordered by total N applied.

The last observation was lack of response from applied N even though the crop was deficient.  Seen this in both the NE and NW corners.  I would hazard with most of the circumstance it was due to a tie up of applied N by the previous crops residue.  The length at which the winter stretched into spring residue break down was also delayed.

Take Home 

Here it is folks APPLY NITROGEN RICH STRIPS.  Just do it, 18 years of research preformed in Oklahoma on winter wheat says it works. Hold off on heavy pre-plant N even if anhydrous is cheap.  It does matter how cheap it is if it doesn’t make it to the crop.  Will we see another year like 2015-16, do not know and not willing to place money on either side. What we do know is in Oklahoma split applying nitrogen allows you to take weather into account and the N-Rich strip pays dividends.

There are several fact sheets available on top-dressing N and the application of N-Rich strips.  Contact your local Oklahoma Cooperative Extension Service county educator to get a copy and see if they have a GreenSeeker sensor on hand.

Some thoughts on pre-plant nitrogen and a little outside the box thinking

It is that time of year, every Co-op I drove by the other day had a line of trucks pulling anhydrous tanks and the spinner spreaders were being loaded.  For those of you who haven’t applied your nitrogen yet lets discuss the options traditional and nontraditional.

Anhydrous Ammonia, 82-0-0: by far the most widely used N source is the southern Great Plains.  While it is not the most enjoyable to work with it is the cheapest per pound of N and that leads to its wide spread use without Oklahoma wheat production.  Just a few simple rules with NH3, get it in the ground and close the row behind you.  In conventional till this is usually easier unless the ground is too wet or too dry.  In no-till this may be a little more challenging but usually easily accomplished.  With the rise in low disturbance applicators I am seeing more and more acres of no-till receiving NH3.  Last year I was in a field of stripper stubble and I had a hard time finding where the rig had run, minus wheel tracks.

Urea, 46-0-0: is second on the hit list in nitrogen sales in our state.  It is a safe source that is easily handled and applied. In a conventional till system where the urea can be worked in shortly after application it is a very efficient and effective source.  Unfortunately when it is applied to the soil surface and rain is the method of incorporation we can experience between 5-60% N losses.  The losses come from how urea is converted to plant available ammonium (NH4).  For urea (NH2)2CO2, to be converted to plant available NH4 it needs the enzyme urease.  Urease is present everywhere but in the highest concentrations on plant residue.  The figure below shows the reaction, urease converts urea into NH3 as soon as the prill dissolves.  In the presence of moisture the NH3 (gas) is turned immediately to NH4 (solid) and is absorbed onto the soil particle.

Graphic of Urea's conversion to plant available ammonium.

Graphic of Urea’s conversion to plant available ammonium.

The problems come when there is no soil particle for the NH4 to bind with.  It usually takes 0.50 inches of rain or irrigation to fully dissolve and incorporate urea into the soil.  So if we only get a few tenths or hundredths, even heavy dews, some of the urea will dissolve, be converted to NH3 then NH4 and be left on the plant/residue.  When the moisture dries, some or all of the NH4 goes back to NH3 and will gas off into the atmosphere. I have even seen this happen when urea is applied on a wet/damp soil, not incorporated and it doesn’t rain for significant period of time.  If the temps are cooler the urease is slower so less of the urea is converted to NH4, but if the temps are warm 60+ degrees these little enzymes can act very quickly.

Urea placed on the surface of a wet soil under two temperature regimes. White text is the number of hours after application.

Urea placed on the surface of a wet soil under two temperature regimes. White text is the number of hours after application.

Urea placed on dry soil, Top row: dry soil no water added, Bottom left, moisture added from subsurface, Bottom right : simulated rain fall event of 1/2". White text is the number of hours after application.

Urea placed on dry soil, Top row: dry soil no water added, Bottom left, moisture added from subsurface, Bottom right : simulated rain fall event of 1/2″. White text is the number of hours after application.

 

 

 

 

 

 

 

 

 

 

Below is a short video on using urea fertilizer.

While the recent rains are a blessing and will surely help germination, it is not aiding our N use efficiency especially in no-till. That is why in some parts of the state you may see some grain drills running right now.  Some of those producers are not planting wheat they are actually applying there pre-plant urea.  I have even been told in the SW part of the start some producers are using air-seeders to apply their urea.  While this seems like a costly venture I have worked with the Ag Economist to create a calculator to figure up the break even for when it would pay to use an air-seeder over the traditional spinner spreader in no-till. We hope to put the finishing touches on it in the next few days.  When it is completed it will be shared on this blog.

Liquid Urea Ammonium Nitrate, 32-0-0 or 28-0-0: while this is one of the more expensive forms of N many producers are utilizing this source because the can pre buy and store on site and as sprayer get larger they can cover a significant amount of ground quickly.  For the most part UAN is used in no-till and is a great source.  I always recommend that applicators use streamer nozzle or streamer bars to apply UAN.  When UAN is applied via a flat fan nozzle it spreads the fertilizer across the residue allowing a significant portion to be tied up.  The streamers concentrate the fertilizer into streams/bands reducing contact with residue and increasing the amount of UAN that reaches the soil surface.

Timing and Rates

The cost of anhydrous, about $0.1 to 0.12 less per pound N less than urea is driving its use this year.  The lower price is also driving a significant about of producers to go with 100% of their N pre-plant.  While this makes for sound economics now having all of your N upfront is like putting all of your eggs in one basket.  If we do get that cold and wet winter as some are calling for this presents a great chance for the N to move down the soil profile and down the slope.  I have always recommended split application.  This allows a producer to judge the crop throughout fall, winter and even yearly spring and adjust his or her N plan accordingly.  For those who plan to graze there is still a need to get enough N down to produce fall forage, this may be 50 to 80 lbs of N, but for grain only production planted later in the fall a typical crop may only need 20-30 lbs of N before going into winter.  The old rules of thumb, 2 lbs N per bushel and 30 lbs N per 100 lbs of gain still work and are better than a guestimate but we have better ways. Right now is the time to plan to apply N-rich strip, a strip in the field with 40 to 50 lbs more than the rest of the field.  These strips can be applied with a variety of applicators, but as long as the N goes down in at least an area 10 ft wide by 300 ft long it is good to go.

Just a few of the applicators used for putting out N-Rich Strips. Not shown is NH3 applicator.

Just a few of the applicators used for putting out N-Rich Strips. ATV Sprayer, Receiver Hitch mounted Sprayer, Road sprayer with a rear boom, pull type spinner, large sprayer, push spreader.  Not shown is NH3 applicator.

Below is a N-Rich Strip 101 video.

If you have got the N-Rich strips out you can set back and watch to see when and if they develop.  If you can see the strip you know you need too fertilize.
While many are not ready to think about top-dressing yet, it is never too early.  Don’t be afraid to think outside the box.  Oklahoma’s springs tend to present the perfect conditions for N loss when urea is the primary N source.  This year in a 4R Top-dress Nitrogen Application Demo, at Lahoma and Chickasha, we are going to apply just about every available commercial source in about every possible manor.  Urea will be broadcast, coated with inhibitors, applied with a grain drill, NH3 will be knifed in, and UAN will be applied with flat fan nozzles, streamer nozzles and knifed in.  As technologies improve and the cost of N remains relatively high the options for top-dress N application will continue to improve. The economics of wheat production don’t look great right now so don’t be afraid to think outside the box, even if it does raise the eyebrows of your neighbors.  Fill free to contact myself or your local extension educator if you have any questions about N application.

 

John Deere double disk drill used to apply urea in-season.

John Deere double disk drill used to apply urea in-season.

WAKO NH3 applicator used for in-season application.

WAKO NH3 applicator used for in-season application.