Home » Fertilizer

Category Archives: Fertilizer

ABOUT ME

osunpk

osunpk

Since 2008 I have served as the Precision Nutrient Management Extension Specialist for Oklahoma State University. I work in Wheat, Corn, Sorghum, Cotton, Soybean, Canola, Sweet Sorghum, Sesame, Pasture/Hay. My work focuses on providing information and tools to producers that will lead to improved nutrient management practices and increased profitability of Oklahoma production agriculture

View Full Profile →

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 4,415 other followers

Split N application pays in graze out wheat.

Bronc Finch Ph.D. student under the leadership of D.B. Arnall
Brian Arnall, Precision Nutrient Management Specialist.

A study conducted by Oklahoma State University, in cooperation with Noble Research Institute has had the opportunity to evaluate the nitrogen management of graze-out winter wheat over the past three years. This study was set up with three nitrogen management treatments of a 60 lb N pre-plant, 120 lb N pre-plant and a split application with 60 lbs N at pre-plant and 60 lbs N at spring top-dress applications. In the 2018-2019 season top-dress N was applied shortly after Feekes 6 stage (hollow-stem) due to rain and other conditions preventing timely top-dress. The 2019-2020 and 2020-2021 growing seasons received ideally timed top-dress applications in late February to early March. For this study the first cuttings were targeted for just before the appearance of first hollow stem, and second harvest was targeted at just prior to boot stage. The 2020-2021 growing season had much less growth at the time of top-dress than previous years due to a severe early spring freeze damage which resulted in only a harvest at boot.

Spreading top-dress nitrogen on the graze-out wheat studies

Table 1. Rainfall totals for each year within each location. September 1 – January 1 represents the pre-vernalization grazing period, September 1 – January 1 represents the growing season total.

Crop production can be majorly impacted by the environment, and that is no different for a forage production system such as in this study. Table 1 shows the differences in rainfall totals for each growing season, and how much of that seasons total fell prior to January when hard freezing conditions typically occur. The 2018-2019 season saw at least 40% more rainfall than other years at both location. Much of this increase was in the fall and early winter which lead to a greater first harvest at both locations and greater soil moisture storage for after spring green-up. The environmental impacts continue to cause reduction in annual yields for the 2020-2021 season with a longer cool season and a late freeze (data not shown) which caused significant winter kill on what was a decent fall production.

Figure 1. Gain-yield production (dry matter yield * net energy for gain)in tons per acre, for each N rate application; 60 lbs of N pre-plant, 120 lbs of N pre-plant and a split application (60-60) of 60 lbs of N pre-plant and 60 lbs of N top-dress. These are presented for each location Chickasha (Left) and Lake Carl Blackwell (Right). Each season gain-yield is denoted by the value within each bar and the system total is denoted by the value above each bar.

Regardless of environmental impacts system improvements were observed with the management on N for wheat biomass production. Figure 1 shows the amount of biomass that can be attributed to the gain of a grazing animal, calculated as dry matter yield * net energy for gain. Gain-yield production reported substantial increases in total system production with the increase in N rate in comparison to a lower 60 lb per acre rate. When forage dry matter yields were near or above 5 tons, such as in 2018-2019 the split application of 60 lbs pre-plant and 60 lbs top dress significantly increased the yield and gain-yield, while lower yielding years only saw increases with increased rate. Overall system production improved with the increase of application and slight improvements were reported when application of N was closer to plant utilization.

Figure 2.  Nitrogen Uptake in pounds per acre, for each N rate application; 60 lbs of N at pre-plant, 120 lbs of N pre-plant and a split application (60-60) of 60 lbs of N pre-plant and 60 lbs of N top-dress. These are presented for each location Chickasha (Left) and Lake Carl Blackwell (Right). Each season N uptake is denoted by the value within each bar and the system total is denoted by the value above each bar.

Total N uptake of harvested biomass is documented in Figure 2 and follows a similar trend as total biomass yield. Total N uptake can be directly related to protein, as protein is total N * 6.25. As observed with the total biomass production, N uptake was reduced annually due to the reduction in available soil moisture and plant growth. The increase of rate increased overall system N uptake as well as increased annual N uptake. Split applications of N resulted in an increased N uptake in comparison to the same total rate applied as pre-plant for the entire system and in most individual years. Increasing the uptake of N not only leads to the increase in biomass and protein concentration but also allows for the more efficient usage of fertilizers. By utilizing as much fertilizer as possible allowing for increased root growth to mine N from the soil. These increases in yield production and nitrogen uptake improve the gain potential of the forage crop which leads to increases in return on investment for the producer.

Spring harvest of the graze out wheat fertility study.

Net returns can be calculated by multiplying gain by cattle price. Table 2 shows the 3-year Gain, Return, and Profit of the 120 pre and 60-60 split treatment. The dollar value of gain was set at $1.12 per pound as reported by Dr. Derrell Peel in the Cow-Calf Corner August 16, 2021 newsletter. Interestingly, the delay of the additional 60 lbs N until a top-dress application results in an average increase of $458 per acre over the 120-pre-plant rate. This increase in profit does take into account the extra application cost of top-dress. The rate used was $7.82 ac-1 per year: OSU Fact sheet “CR-230. This results in an increased cost of $23.46 over a three year time frame.

Table 2. Evaluation of Gain (dry matter yield * net energy for gain) in tons ac-1, Return (Gain * $1.12) in $ ac-1, Profit (Return minus fertilizer and application cost $241.03 for 120 and $264.49 for 60-60 split) and the Difference between the profit of 120 lbs of N applied preplant and the 60-60 split application.

As the winter wheat planting begins and decisions are being made, the management of nitrogen can be a very challenging one. From this data set, yield increased with the application of N above 60 lbs, as expected. While the decision to pre-plant or split apply can add an element of difficulty to the decision, the split application has been shown to be equal to or better than 100% pre-plant application. This study indicates the application of a split of N can be more profitable, than utilizing a pre-plant application of the same rate. Resulting in improved livestock gain-yield production, and system profitability. While the split application did not have a big payoff every year, taking advantage of it in the good years resulted in such a significant increase that split application resulted in a $458 per acre increase in profit across the two sites.

For questions or comments please feel free to reach out.
Brian Arnall
b.arnall@okstate.edu
405.744.1722

Acknowledgement of the support by Noble Research Institute for this project.

In-furrow fertilizers for wheat

From Guest Author, Dr. Dorivar Ruiz Diaz, Nutrient Management Specialist, Kansas State University

Wheat is considered a highly responsive crop to band-applied fertilizers, particularly phosphorus (P). Application of P as starter fertilizer can be an effective method for part or all the P needs. Wheat plants typically show a significant increase in fall tillers (Figure 1) and better root development with the use of starter fertilizer (P and N). Winterkill can also be reduced with the use of starter fertilizers, particularly in low P testing soils.

Figure 1. Effects on wheat tillering and early growth with in-furrow P fertilizer on soil testing low in P. Photo taken in 2020 in Manhattan, KS. Photo by Chris Weber, K-State Research and Extension.

In-furrow fertilizer application

Phosphorus fertilizer application can be done through the drill with the seed. In-furrow fertilizer can be applied, depending on the soil test and recommended application rate, either in addition to or instead of, any pre-plant P applications. The use of dry fertilizer sources with air seeders is a very popular and practical option. However, other P sources (including liquid) are agronomically equivalent and decisions should be based on cost and adaptability for each operation.

When applying fertilizer with the seed, rates should be limited to avoid potential toxicity to the seedling. When placing fertilizer in direct contact with wheat seed, producers should use the guidelines in Table 1.

Table 1. Suggested maximum rates of fertilizer to apply directly with the wheat seed

 Pounds N + K2O (No urea containing fertilizers)
Row spacing
(inches)
Medium-to-fine
soil textures
Course textures or dry soils
 
151611
102417
6-83021

Air seeders that place the starter fertilizer and seed in a 1- to 2-inch band, rather than a narrow seed slot, provide some margin of safety because the concentration of the fertilizer and seed is lower in these diffuse bands. In this scenario, adding a little extra N fertilizer to the starter is less likely to injure the seed – but it is still a risk.

What about blending dry 18-46-0 (DAP) or 11-52-0 (MAP) directly with the seed in the hopper? Will the N in these products hurt the seed?

The N in these fertilizer products is in the ammonium-N form (NH4+), not the urea-N form, and is much less likely to injure the wheat seed, even though it is in direct seed contact. As for rates, guidelines provided in the table above should be used. If DAP or MAP is mixed with the seed, the mixture can safely be left in the seed hopper overnight without injuring the seed or gumming up the works.  However, it is important to keep the wheat mixed with MAP or DAP in a lower relative humidity.  A humidity greater than 70% will result in the fertilizer taking up moisture and will cause gumming or caking within the mixture.  

How long can you allow this mixture of seed and fertilizer to set together without seeing any negative effects to crop establishment and yield?

The effects of leaving DAP fertilizer left mixed with wheat seed for various amounts of time is shown in Figure 2. Little to no negative effect was observed (up to 12 days in the K-State study).

Figure 2. Effects on wheat yield from mixing P fertilizer with the seed. Study conducted in 2019 and 2020 at four sites. Graph by Chris Weber, K-State Research and Extension.

Although the wheat response to these in-furrow fertilizer products is primarily from the P, the small amount of N that is present in DAP, MAP, or 10-34-0 may also be important in some cases. If no pre-plant N was applied, and the soil has little or no carryover N from the previous crop, the N from these fertilizer products could benefit the wheat.

Dorivar Ruiz Diaz, Nutrient Management Specialist
ruizdiaz@ksu.edu

Chris Weber, former Graduate Research Assistant, Soil Fertility

Nitrogen Rich Strips, a Reminder

With the recent increase in fertilizer prices just prior to winter wheat planting season I felt it was a good opportunity to bring this older post back up and give it an update. Since the blog was originally written in 2013 there has been a lot of work done both to better understand the nitrogen fertilizer need / timing of winter wheat and efforts to updated and improve the algorithms behind the Sensor Based Nitrogen Rate Calculator.

The Nitrogen Rich Strip, or N-Rich Strip, is a technique/tool/process that I spend a great deal of time working with and talking about.  It is one of the most simplistic forms of precision agriculture a producer can adopt.  The concept of the N-Rich strip is to have an area in the field that has more nitrogen (N) than the rest.  In recent years we have been utilizing Zero-N strips in corn. The approach to some may be new but at one point most producers have had N-Rich Strips in their fields, albeit accidentally.  Before the days of auto-steer it was not uncommon, and honestly still is not, to see a area in the field that the fertilizer applicator either doubled up on or skipped.  In our pastures and dual purpose/graze out wheat every spring we can see the tell-tale signs of livestock deposits.  When over laps or “Cow Pox” become visible we can assume the rest of the field is behind in nitrogen.  The goal of an N-Rich Strip is to let the field tell you when it needs more N. Research has shown wheat can be yellow and recover completely and it may even be a benefit. See the link for the Value of In-season Nitrogen at the end of this blog.

Cow Pox, Image courtesy Kaitlyn Nelson
Cow Pox, Image courtesy Kaitlyn Nelson

What I like most about the N-Rich Strip approach is its Simplicity.  The N-Rich Strip is applied and; Scenario 1. The N-Rich Strip becomes visible (Greener) you APPLY NITROGEN, Scenario 2.  The strip is not visible you Option A. DON’T APPLY NITROGEN Option B. Apply Nitrogen Anyways.  The conclusion to apply N or not is based on the reasoning that the only difference between the N-Rich Strip and the area 10 ft from it is nitrogen, so if the strip is greener the rest of the field needs nitrogen.  If there is no difference N is not limiting and our research shows N does not have to be applied.  However producers who decide to be risk adverse (in terms of yield) can apply N but it would be advised to do so at a reduce the rate.  Now is a good time to note that the N-Rich Strip alone provides a Yes or No, not rate recommendation.  At OSU we use the GreenSeeker optical sensor and Sensor Based Nitrogen Rate Calculator (SBNRC) to determine the rate, but that discussion will come later.  I equate the change from using yield goal N rate recs to the N-Rich Strip as to going from foam markers to light bars on a sprayer.   Not 100% accurate but a great improvement.

N-Rich Strip in no-till wheat near Hobart OK.
N-Rich Strip in no-till wheat near Hobart OK.
N-Rich Strips showing up on google earth image. You can see how the strip on the left is darker than the right suggested a greater need for nitrogen.

Now that we have covered the WHY, lets get down to the nuts and bolts HOW, WHEN, WHERE.

How the strip is applied has more to do with convenience and availability than anything else but there are a few criteria I suggest be met. The strip should be at least 10 ft wide and 300 ft long. The rate should be 40 to 50 lbs N (above the rest of the field) for grain only wheat and canola, 80 lbs N for dual purpose wheat. The normal recommendation is that when applying pre-plant either have a second, higher rate programmed into the applicator or make a second pass over an area already fertilized. Many will choose to rent a pull type spreader with urea for a day, hitting each field.


Also popular are applicators made or adapted for this specific use. ATV sprayers are the most common as they can be multi-purpose. In most cases a 20-25 gallon tank with a 1 gpm pump is placed on the ATV with an 8-10ft breakover boom. The third applicator is a ride away sprayer with a boom running along the rear of the trailer. In all cases when liquid is the source I recommend some form of streamer nozzle.
If this all sounds like to much then the easiest application method might just be a push spreader. No need for trailer or even a truck. In most cases I recommend whichever N source is the easiest, cheapest, and most convenient to apply.

Vincent N-Rich Strip Applicator, Ponca City OK
Vincent N-Rich Strip Applicator, Ponca City OK
Gard N-Rich Strip Applicator, Fairview Ok
Gard N-Rich Strip Applicator, Fairview Ok
Push spreader used by Oklahoma State Cooperative Extension service. Check with your local office. If they don’t have one, we can send one.

When the strip is applied in winter crops proper timing is regionally dependent. For the Central Great Plains, ideally the fertilizer should be applied pre-plant or soon after.  However,  in most cases as long as the fertilizer is down by December or even January everything works. Timing is more about how much the wheat is growing. If it is slow growing fall, timing can be delayed. When the N-Rich Strip approach is used on the Eastern Shore in Virginia and Maryland the strips have to be applied at green up. We have been trying this in Oklahoma and Kansas with good success.  It is always important to make the tools fit your specific regional needs and practices and not the other way around.

Where is actually the biggest unknown.  The basic answer is to place the N-Rich Strip in the area that best represents the field.  Many people question this as it doesn’t account for spatial variability in the field, and they are correct.  But my response is that in this case spatial variability is not the goal, temporal variability is.  Keeping in mind the goal is to take a field which has been receiving a flat yield goal recommendation for the last 30+ years and make a better flat rate recommendation.  My typically request is that on a field with significant variability either apply a strip long enough to cross the zones or apply smaller strips in each significant area.  This allows for in-season decisions.  I have seen some make the choice to ignore the variability in the field, made evident by the strip, and apply one rate and others choose the address the variability by applying two or more rates.  One key to the placement of N-Rich Strips is record keeping.  Either via notes or GPS, record the location of every strip.  This allows for the strips to be easily located at non-response sites.  It is also recommended to move the strip each year to avoid overloading the area with N.  

For more information on N-Rich Strips

Factsheets

https://extension.okstate.edu/fact-sheets/applying-nitrogen-rich-strips.html

https://extension.okstate.edu/fact-sheets/using-the-greenseeker-handheld-sensor-and-sensor-based-nitrogen-rate-calculator.html

https://extension.okstate.edu/fact-sheets/impact-of-sensor-based-nitrogen-management-on-yield-and-soil-quality.html

Related Blogs

YouTube Videos  

Nitrogen Source: What’s “cheap” now may be lost later

Raedan Sharry, Ph.D. Student, Precision Nutrient Management
Brian Arnall, Extension Specialist, Precision Nutrient Management

Note, this blog is focused on grain only winter wheat production.

Crop producers looking to increase profits often consider how to reduce costs without sacrificing yield and/or quality. This applies to essentially all production functions including nitrogen application. Winter wheat growers in the southern Great Plains have a wide number of options available to them when considering nitrogen source and application technique. At the time of writing (08/27/2021) fertilizer prices obtained from the Two Rivers Farmers Cooperative are as follows ($/unit): UAN (28-0-0) $0.62, NH3 (82-0-0) $0.45, and Urea (46-0-0) $0.62. These price levels equate to approximately a 57% increase in urea cost, 65% increase in UAN28, and a 65% increase in NH

Application Timing

Winter wheat producers in the southern plains have historically applied nitrogen (N) fertilizer prior to planting, often utilizing anhydrous ammonia for application due to its generally lower price point per unit of N relative to other sources. However, research at Oklahoma State shows that if the total N application is delayed until approximately feekes 5 to feekes 7 stages (jointing) yields were increased 23% of the time while grain protein was increased 68% of the time. By delaying N application to later in the growing season N is more likely to be available when the crop requires by avoiding conditions conducive to losses. Further reading on delaying nitrogen application can be found here (https://osunpk.com/2020/09/10/value-of-in-season-application-for-grain-only-wheat-production/)

A study located a Perkins, OK observing yield and protein response provides an example of an expected response to delayed N. In this study 3 N fertilizer rates (180, 90 and 45/45 split) across 5 different timings (Pre, 30, 60, 90, and 120 days after planting) where investigated. Grain yield was maximized by the 180 lb. rate applied 60 days after planting, while protein was maximized at the 120 days after planting timing. This same trend continues across all N rate levels as the later N applications whether at 60 or 90 increased yield relative to the pre while the 120 days after planting application maximized protein level regardless of rate level. However, maturity of the 120 day application treatment was severely delayed. This experiment shows the ability to sustain yield while decreasing N rate if N application is pushed to later in the season to avoid conditions that lead to N losses as displayed by the 90 lbs. at 90 days after planting treatment compared to the 180 lb. pre-plant rate.

Winter Wheat grain yield (bushels per acre) and grain protein (%) results from a study looking at application of nitrogen. Zero, is zero N check, 180 and 90 treatments were all of the 180 or 90 lbs N per acre was applied at pre-plant, 30, 60, 60, or 120 GDD>0 after planting. The 45s refers to split application were 45 lbs N was applied at pre-plant and an additional 45 lbs N was applied at 30, 60, 60, or 120 GDD>0 after planting. All N applied at NH4NO3. Pre (4.11.20), 30 (8.12.20), 60 (2.23.21), 90 (3.19.21), 120 (5.2.21). Blue bars are grain yield, orange dots protein.

Application Cost

Application costs are directly related to choice of source utilized. For instance; anhydrous ammonia application is predicated on the use of a pulled implement such as a low disturbance applicator for in-season application or a tillage implement for pre-season application. This is compared to other sources such as urea or ammonium nitrate which may be broadcast, or UAN that can be applied using a sprayer. The relationship between source and cost of application is inherently related to the application efficiency of the equipment used. Table 2 below provides a rough idea of cost associated with different application methods. (Information Retrieved from Iowa State). Fuel cost assumed at $2.60/gal. Labor cost assumed to be $15.00/hr.

ImplementOperating EfficiencyFuel cost/acLabor Cost/acOperating cost/ac
90’ SP Sprayer~78 ac/hr$0.34$0.19$0.53
60’ Dry Spreader~30 ac/hr$0.39$0.50$0.89
35’ Sweep Plow~21 ac/hr$1.43$0.71$2.14

In many operations across the southern plains efficiency has become a key factor in decisions such as input selection and equipment purchases. This has come in response to the need to cover more acres with less labor. With that in mind and looking back to table 2 it is easy to see that a self-propelled sprayer is likely able to cover more acres than other equipment options. This most likely should be considered when considering options for N management in the wheat crop.

Summary

With wheat sowing quickly approaching for many and field preparation nearing completion it is important to consider your nitrogen management options. Delayed N application allows for flexibility in management plan and depending on source utilized may increase application efficiency over pre-plant applications requiring a tillage implement. As fertilizer prices continue to remain high it is also important to consider the likely increase in N use efficiency due to applying N closer to when N requirement is peaking. Controlling cost while continuing to maximize output is imperative to sustainable profitability in crop production.

Any Question or Comments please feel free to reach out me.
Brian Arnall b.arnall@okstate.edu

Can Grain Sorghum Wait on Nitrogen?

Michaela Smith, Masters student under advisement of B. Arnall
Brian Arnall, Precision Nutrient Management Specialist

            Grain sorghum producers in Oklahoma are challenged greatly by their environment and sporadic rainfall patterns, which diminish as the season progresses. These uncontrollable variables influence timing of nitrogen (N) application and nitrogen use efficiency. Using rainfall events as an incorporation method forces producers to apply before the event regardless of its intensity or delay application until field conditions are acceptable while anxiously waiting for another rainfall event. When deciding to delay N application it’s important to know the effects on physiological development and grain yield.

Figure 1. Field trial at Perkins, showing visual heading differences among nitrogen application timings. Timing from left to right were made 49 DAP, CHECK, 63 DAP.

Trial structure and breakdown

            This study was conducted over the 2020 growing season consisting four locations, including one double cropping system following wheat. Ten in-season applications were made using ammonium nitrate (AN) as the N source at a rate of 90 lbs. ac. Using AN as the N source reduced the risk of nitrogen loss through the process of volatilization as the goal of the research was to test the plant not the fertilizer. A pre-plant treatment served as the standard check, while in-season applications were initiated at 21 Days After Planting (DAP) and applications made sequentially at 7-day intervals. A non-fertilized check was included to the study to confirm locations were responsive to N fertilized applications Hybrid, plant date, and seeding rate can be found in Table 1.

Table 1. Planting information or the delayed nitrogen sorghum trials.

Physiological Response to Application Timing

            Two of the four locations demonstrated an effect to physiological development and maturity with the delay of nitrogen application. A delay in heading by a one to two-week period was observed at Perkins and Lahoma for applications made after May 21st (Table 2.). This delay in heading contributed to similar delay in maturity and potential harvest date. At Perkins decreased plant height was observed in the pre-plant plot and was associated with the onset of late season nitrogen deficiency (Figure 2). While this response was unexpected, the impact of nitrogen deficiency experienced early in the crop growth on the root and shoot growth has been well documented in many species. As a plant experiences nitrogen limitations growth changes from above ground to the below ground parts (roots) in an attempt to alleviate nitrogen stress. This increase in root growth could contribute to a more efficient uptake of nitrogen and decrease loss. In contrast to Figure 2, pre-plant application is shorter than compared to later season applications, this could be a result of inadequate N uptake thus leading to N loss by leaching, whereas later applications had increased root growth for efficient N interception and uptake.

Table 2. Delay in Heading for the Perkins (gray) and Lahoma (green). Letters indicate the start and finish of heading. S represent the start of heading while F indicants the finish of heading, SF denote treatments the started heading and finished within the same week.
Figure 2. Visual maturity differences between nitrogen application timings. Timing of applications are listed within the figure.

Yield Response to Application Timing

Response of N was observed at all locations (Figure 3), while the delay of nitrogen varied in its effects across all locations. Grain yield from each N application was compared back to the pre-plant application to evaluate the effects of timing. All four locations responded positively to N fertilizer.  At both LCB and Lahoma grain yield was maintained with applications made as late as 42 to 63 DAP respectively before any negative trend in grain yield was observed. Perkins was the only locations to have a statistically significant increase in grain yield due to delayed N applications. At this site, which is a sandy loam, waiting until 42 DAP resulted in a 15 bushel increase over the pre-plant plot. Now Alva which was double crop showed that rainfall is key.  At this site, none of the in-season treatments made it up the level of the pre-plant. The reason for this will be discussed further below.

Figure 3. Grain sorghum yield results from the nitrogen timing studies conducted at four locations in Oklahoma.

Influence of Rainfall

            The loss in grain yield at Perkins in the pre-plant application could likely be reflective of nitrogen loss due to leaching. Pre-plant applications have been well documented in the aspect loss as a result of crop requirement and early physiological development. Long term mesonet rainfall data depicts a decline in the probability of rainfall with the progression of the growing season across all locations. In early season the probability of 0.5 inches of rainfall ranges from 8 to 10% respectively for LCB, Lahoma, and Perkins, and dramatically decline to percentages at low as 5% in mid-July during grain filling period. For Alva rainfall probability is substantially lower as its season was initiated during the drier months, which depicted a probability of 6% for 0.5 inches of rainfall, and 4.5% for 1 inch for early season rainfall crucial for pre-plant incorporation and crop establishment. These probabilities drop considerably compared to regular season as the months progress onward, mid to late August probability for 0.5 inches ranges from 0.8 to 11.5%, while for a 1 inch is 0 to 6.9%. Past weather data provided by the mesonet illustrates how later in the season rainfall and its amount is variable, suggesting that in a double crop scenario delayed application is not recommended while it is in regular season crop due to the increased chance of rainfall probability. 

Summary

            The purpose of this study was to evaluate the impacts of delayed nitrogen application in grain sorghum. In order to develop an accurate conclusion additional site years are required, although current data could suggest delaying nitrogen application for full season grain sorghum is possible without a detrimental loss in grain yield. This means producers have time to evaluate the crop and market to determine if more inputs are needed and economical, while allowing implementation of technologies such as the N-Rich Strip and SBNRC.

If you have any questions for comments please reach out.
Brian Arnall
b.arnall@okstate.edu
405.744.1722

Acknowledgement of LSB Industries for support of this project.

Nitrogen timing in a winter wheat forage system

Bronc Finch Ph.D. student under the leadership of D.B. Arnall
Brian Arnall, Precision Nutrient Management Specialist.

The recent weather conditions have caused a delay in the ability to top-dress winter wheat in some parts of Oklahoma. Despite this delay, conditions have still been good for growth, which means a steady increase towards the hollow stem and jointing stages. As these stages approach, or have passed, many concerns have been raised about the decision to apply nitrogen to increase spring forage production of winter wheat. A study conducted over the past two years at Oklahoma State University, in cooperation with Noble Research Institute has had the opportunity to evaluate how a nitrogen application at or just after hollow stem impacts the forage production of winter wheat. This study was set up with three fertilizer treatments of a 60 lb N pre-plant only, 120 lb N pre-plant only, and a 60 lb pre-plant and 60 lb top-dress applications. In the first season of the trial, 2018-2019, the fertilizer application was applied shortly after the wheat achieved the Feekes 6 stage (hollow-stem) due to rain and other conditions preventing a timely top-dress. In the 2019-2020 season of the trial the treatments were applied at a more ideal time, near the end of February and beginning of March before hollow stem. For this study the first cutting was targeted for just prior to hollow stem and the second cutting conducted at early boot stage. 

In 2018-2019 the additional 60 lb N applied in the 120 lb N pre-plant increased the dry biomass production in the second harvest by 0.4 and 0.9 tons per acre above the 60 lbs treatment at Chickasha and Lake Carl Blackwell, respectively (Figure 1). The delay of the additional 60 lbs of N increased the yield by an additional 0.7 and 1.7 tons per acre, respectively. The 2019-2020 season showed similar results at the Lake Carl Blackwell location in the second harvest, where the additional 60 lbs N at pre-plant increased biomass yield by 0.6 tons, with the delaying of the additional 60 lbs increasing biomass yield by 0.6 more as compared to the same rate when applied at pre-plant. But that additional yield gained with the split application came at cost as the 120 pre-plant resulted in 0.6 tons more in the first harvest. These results suggest that more N was needed in the pre-plant and top-dress application. The 2019-2020 Chickasha trial showed little difference in rate, more than likely 60 lbs N was enough maximize forage yield.

Figure 1. Dry matter harvest results for each of the harvest dates from the forage wheat trials from Chickasha (left) and Lake Carl Blackwell (right) in 2018-2019 (top) and 2019-2020 (Bottom). Three fertilizer treatments 60: 60 lbs Nitrogen applied at pre-plant, 120: 120 lbs of Nitrogen applied at pre-plant, and 60/60: 60 lbs of Nitrogen applied at pre-plant and an addition 60 lbs of Nitrogen applied at top-dress.

 Total biomass production for 2018-19 winter wheat forage (Figure 2) showed to have a greater increase in total biomass production when the N was split applied with the second application being made shortly after hollow stem. The split application increased total biomass production by as much as 1.3 tons per acre more than the same rate applied as all pre-plant. The 2019-2020 year total biomass production shows to be about the same whether the N was applied all pre or split and applied in February.

Figure 2. Total dry matter harvest results for forage wheat trials from Chickasha and Lake Carl Blackwell in 2018-2019 (Left) and 2019-2020 (Right) Three fertilizer treatments 60: 60 lbs Nitrogen applied at pre-plant, 120: 120 lbs of Nitrogen applied at pre-plant, and 60/60: 60 lbs of Nitrogen applied at pre-plant and an addition 60 lbs of Nitrogen applied at top-dress.

Figure 3 documents N uptake of winter wheat biomass for both years continues the same trend as total biomass. Nitrogen uptake can be directly related to protein as the calculation for protein is %N * 6.25. In all cases uptake was greater than applied. In 2018-2019 split application increased over all nitrogen uptake. Much like the yield of 2019-2020 the N uptake was not significantly impacted by the timing of the N application.

Figure 3. Total nitrogen uptake results for forage wheat trials from Chickasha and Lake Carl Blackwell in 2018-2019 (Left) and 2019-2020 (Right) Three fertilizer treatments 60: 60 lbs Nitrogen applied at pre-plant, 120: 120 lbs of Nitrogen applied at pre-plant, and 60/60: 60 lbs of Nitrogen applied at pre-plant and an addition 60 lbs of Nitrogen applied at top-dress.

Although the assessment of N application made at or after hollow stem in a winter wheat forage system was not an objective of this study, the circumstances have given a unique opportunity to evaluate the outcome. In the 2018-2019 trials when top-dress application was applied at or just following the hollow stem, yield and nitrogen uptake were both increased over the equivalent pre-plant application. For the 2019-2020 season where N was applied at the planned time yields and N uptake were equivalent to the pre-plant. While this data is not conclusive it does indicate the producers can apply N fertilizer to winter wheat forage at or after hollow stem and successfully increase both forage yield and nitrogen uptake.

For questions or comments please feel free to reach out.
Brian Arnall
b.arnall@okstate.edu
405.744.1722

Acknowledgement of LSB Industries for support of these projects.

Value of in-season application for grain only wheat production.

Data used in this blog is summarized from work by
Joao Souza, under the leadership of D.B. Arnall
Lawrence Aula, under the leadership of W.R. Raun

Key Points

  • Wheat is highly resilient and can endure nitrogen stress for a significant period of time and fully recover.
  • Delaying all nitrogen until the Feekes 5 to Feekes 7 time frame resulted in improved yields over the pre-plant 32% of the time and a loss of yield 5%. However, grain protein was improved 82% of the time with delayed nitrogen.
  • It is better to delay nitrogen application to avoid conditions conducive to N loss. 

 

Following the 4Rs of nutrient stewardship has been proven to increase the sustainability and profitability of an agricultural operation. As described by The Fertilizer Institute (https://nutrientstewardship.org/4rs/) the 4R Nutrient Stewardship provides a framework to achieve cropping system goals, such as increased production, increased farmer profitability, enhanced environmental protection and improved sustainability. To achieve those goals, the 4R concept incorporates the: Right fertilizer source at the Right rate, at the Right time and in the Right place.

Historically winter wheat producers have utilized pre-plant nitrogen (N) fertilizer application due to efficiency of time and the lower cost of the primary N source, anhydrous ammonia. However, as the growing cycle of winter wheat is approximately 9 months long with only 80% of the total N accumulation reached by flowering.  Research as shown that N applied prior to planting is more likely to be lost due to leaching or denitrification. Researchers at Oklahoma State University have invested significant efforts in evaluating N management strategies. This blog will present the data from multiple trials which allowed for the comparison of nitrogen applied pre-plant versus in-season. The trials were conducted over a four-year period at multiple locations across central Oklahoma.

Figure 1: Nitrogen uptake of winter wheat from planting to harvest. Adapted from Silva et al.2019. Kansas State University dissertation.

Delayed Nitrogen – NH4NO3
This study was started in the fall of 2016 and concluded with the 2020 wheat harvest. In all, twelve trials were established and achieved maturity. This study was designed to evaluate the recovery of winter wheat grain yield and protein after the crop was N stressed. Treatments included an untreated check, pre-plant application and ten in-season treatments. The application of in-season treatments was initiated when N deficiency was confirmed and treatments were applied in progressive order every seven growing days to the point of 63 growing days after visual deficiency (DAVD). A growing degree days is any day that the average daily temperature is at or above 40⁰ F.  Ammonium nitrate (NH4NO3) was applied at a rate of 90 lbs N ac-1 for all treatments.

Nitrogen response was observed at eleven of the twelve locations, and those sites will be the focus of this review. Nitrogen applications were started ranging from Nov. 10th to Mar. 7th for 0 DAVD and, concluded with 63 DAVD occurring between mid-February and early-May. The analysis of the data evaluated the yield and protein of the in-season applications compared to both the pre-plant application and the application made at the first sign of N deficiency, 0DAVD.

Across the eleven responsive years, the pre-plant application never outperformed the 0DAVD in terms of grain yield or protein. In fact, across all location if the in-season application was made prior to the end of March, the yield and protein was equal to or better than pre-plant applications. Four out of elevens sites, yield was significantly improved with in-season applications, and protein was improved in ten out of eleven locations. For the ten site/years that had applications in March, the mid-March application of 90 lbs of N, which is about the stage of hollow stem (Feekes 6), statistically increased yield four times and protein nine times compared to the pre-plant treatment.

The studies objective was to evaluate how long the crop could be deficient and fully recover. There was no relation between when the crop became deficient and when the crop could no longer recover. Yield as maintained as long as the N was applied by late March, or just before the flag leaf is visible (Feekes 8), grain yield was the same as if applied on the first day of deficiency. However, if the N was delayed to March protein was increased six out of the eleven locations.

Figure 2: Image of the delayed nitrogen study with treatments identified.

 

Delayed Nitrogen – Urea

A mirror study to the Delayed Nitrogen – NH4NO3 was established in the fall of 2018 and concluded with the 2020 harvest. This study was placed next to the NH4NO3 and treatments applied on the same days using the same rate (90 lbs N ac-1) applied as urea to evaluate efficiency of urea applications over a range of dates.
Three of the four locations produced a positive response to N fertilizer and documented similar results as the NH4NO3 project. Across these three sites in-season N was always equal to the pre-plant rate if applied before the flag leaf is visible. In addition, if the urea was applied just after hollow stem, not only was yield maintained but protein was significantly increased compared to both the pre-plant and 0DAVD treatments at all three responsive sites.

Split Rate Nitrogen – NH4NO3

This study looked at multiple rates and times of N application but for this factsheet we will focus on a small set of treatments. Performed over two years and four total sites this project looked at split application of N versus a one-time application, 45/45 split or 90 lbs of N. Application timing was 0, 30, 60, 90, 120 growing days (GDD>0), trying to have applications at planting in December, February, March and April. In three of the four sites the 90 day application produced the greatest yield and protein for both 45/45 and 90 treatments. In this study the one-time application of 90 lbs N ac-1 out yielded the 45/45 split in two of the four years and was equal the other two. The 90 day application of 90 lbs N ac-1  produced a higher protein concentration at all sites compared to the 45/45 split applied on the same date.

Nitrogen Rate by Time – Urea Source

This study evaluated four rates of N (0, 40, 80, 120 lbs N) applied at three times (30 days pre-plant, pre-plant, and Feekes 5) using urea. Feekes 5 is the growth stage prior to hollow stem when the wheats leaf sheaths are becoming strongly erect. This project was completed over two locations for two years, however of the four site/years only three statistically responded to N fertilizer. In those three responsive trials the Feekes 5 application grain yield was equal to pre-plant once, greater than pre-plant once, and less than pre-plant once. The grain protein was only statistically different between the pre-plant and Feekes 5 once, with an increase in protein with late N. The one location with yield loss can be likely attributed to N loss from urea volatilization. The urea was applied on no-till immediately after a heavy rainfall with no substantial precipitation occurring for a week after application.

Summary

This factsheet summarizes four separate research projects which can contribute data from 24 trials to evaluate the application of in-season N compared to pre-plant N, see Table 1. Of these 24 site/years we can draw conclusions from the 22 that responded to N fertilizer applications. Across these trials applying all N pre-plant resulted in the highest grain yield once, applying all N in-season near or after hollow stem resulted in an increase in grain yield above that of the pre-plant seven times. However, the delaying of N application until hollow stem resulted in a significant increase in grain protein concentration at 18 of the 22 trials. 

These results are significant for the winter wheat growers of the southern Great Plains as this research documented not only the ability but the necessity to move away from pre-plant and fall N applications for winter wheat grain production. The window for N application is likely much greater than most wheat producers would have considered. This work showed that not only could N be delayed and yield not sacrificed but, when delayed; yield will be maintained and protein concentration increased.

The final conclusion is that the timing of N application should not be based upon the presence of N deficiency or calendar date. Rather the timing should be based upon the weather and enviroment during application. While many of the projects used NH4NO3 as the N source to limit the impact of N loss via volatilization, the primary source for in-season nitrogen in the region are dry urea and urea ammonium nitrate (UAN) solution. Both of these sources have well documented loss due volatilization. The location from the Nitrogen Rate by Time trial which Feekes 5 applications were statisically below the pre-plant application supports this. This data set provides signifiant evidence that the optimum application window is quite wide and allowing producers more flexiabltiy to avoid those environments which will likely lead to N losses.

Table 1: Summary of all trial locations and years. The X represents statistical significance, alpha = 0.05. In-season application represents all treatments applied at least 30 growing degree days after planting. Majority of the treatments in the studies were applied after spring green up.

Yellow Wheat the 2020 Edition.

I have been trying to write this blog addressing the yellow wheat for about two weeks now. But with finally finding a dry”ish” day or two and a lot of calls and emails about yellow wheat, I am just now getting to it.
So the short story is there is a lot of wheat out there in the state that is show signs of chlorosis, or yellowing. I wish I could say I have all the answers for you in this article, but I will have to lay heavily upon the agronomist best answer, “Well it Depends.”.

Cow pox showing up in a wheat field in Kay County.

First we will start with the things I know least about and then move on to things that are more in my wheelhouse. In the last two weeks I have been on multiple email strings trying to chase down the cause of chlorosis in fields all over the state.  One of these included Dr. Bob Hunger and the Plant Disease & Insect Diag Lab (PDIDL) and in one field his final thought was “So, my best guess is cold and wet soils along with fungi colonizing the older leaves that are starting to senesce.” At the same time I am finding regular occurrence of Tan Spot and Leaf Rust increase. All these pathogen cause some level of chlorosis and if you do not get down and pull some samples you will never know the cause.

Originally thought to be leaf rust, but corrected by Dr. Hunger who suggested it is early stages of striped rust, found in Stillwater Oklahoma 3.27.2020.

 

A new for me this year is what I am calling the herbicide ding. I was able to get over a lot of my wheat that first week of March with a shot of herbicide, everything was almost to hollowstem. The wheat really got dinged. Very visual yellowing and stunting of the plants. Talking with Dr Manucheri, she had seen the same thing in her plots in Tipton. I have also visited several farmer fields with the same symptoms. Dr. Manucheri shared with me the Finesse label. Directly from the label “Temporary discolorations and/or crop injury may occur if herbicide is applied when the crop is stressed by severe weather conditions (such as heavy rainfall, prolonged cold weather, or wide fluctuations in day/night temps), disease or insect damage, low fertility, applications to course soils, or when applied in combination with surfactant and high rates of liquid fertilizer solutions.” This can be found on page 5, http://www.cdms.net/ldat/ldFSL002.pdf . You can just about mark off every weather and application condition mentions, on the same field.

Image collected 3.25.20. The right side was treated with Powerflex on 3.5.20. The left side was not treated so that sorghum could be planted in April.

Now to the yellow wheat I can comfortably talk about. There is nitrogen deficiencies out there. That should not come as a shock with the amount of rain we have received over the last couple months. I also believe that a fair amount of the wheat crop out there is a bit lacking on roots department.

 

The overarching wet cools soils that we have more than likely have led to reduced root exploration in some areas. And if you combine short roots with a nitrate leaching then the probability of N being out of the reach of the crop is high. Then the question is “Is there still time to do anything?”. The trip I look over the weekend (3/28, 3/29) that encompassed a great deal of the North Central Ok wheat belt showed me that the majority of the wheat had really progressed physiologically in the last two weeks. At this point, a positive return on N investment hinges on the stage the wheat is at.

Our delayed N work over the past several years show that we have maintained the yield on our trials even when fertilizer was delayed into the first week of April. https://osunpk.com/2019/08/14/how-long-can-wheat-wait-for-nitrogen-one-more-year-of-data/

Each graph is from a location where the delayed N study was preformed. The objective of our study was to determine the impact of prolonged nitrogen deficiency on winter wheat grain yield and protein. Eight studies were conducted with 11 N application timings in no-till dryland conditions. A pre-plant treatment of 90 lbs ac-1 of N was broadcast applied as ammonium nitrate (AN). We used AN as our source because we wanted to measure the crops ability to recover and eliminate the impact of source efficiencies. When visual symptom differentiation (VSD) was documented between the pre-plant and the non-fertilized check, i.e the N-Rich Strip showed up, top-dress applications were performed every seven growth days (GDD> 0) (https://www.mesonet.org/index.php) until 63 growth days after VSD at all sites. The only N the treatments received where applied according to treatment structure. No pre-plant N was applied on the trials other than the Pre-plant treatment.

This table shows the application dates of the 10 site years of the delayed nitrogen study. The first column is the location, to the right of the location is two rows the top is grain yield and the bottom is grain protein. Each of the following columns corresponds to an application date. Applications began at each study when the The colors are related to whether that application was statistically (Alpha=0.05) worse than, equal too, or better than applying nitrogen at the first sign of deficiency (0DAVD). For this comparison it is important to know that at no location did preplant have significantly greater yield than 0DAVD.In the majority of those years that first week of April corresponded with the growth stage  Feekes 8, last leaf just visible. As the crop moves beyond that point, catching up did not happen. Currently there is wheat out there in the state that has not hit hollow stem (Feekes 6) and there is wheat at Flag leaf (Feekes 9).

 

The Feekes Scale focused in on the stem extension growth phase. The period extends from hollow-stem (Feekes 6) to boot (Feekes 10).

The high rainfall totals we have could have also led to another deficiency sulfur. In the past S deficiency is fairly hard to find in Oklahoma. Our long history of low S using winter wheat and high sub-soil S levels have kept the response to Sulfur low, but not uncommon. Sulfur is a mobile nutrient and will also be lost via leaching especially in sandy soils in the northern part of the state. Sulfur deficient is different from N in that it shows in the newer growth as a general yellowing of crop. Kansas State has a lot of great resources on sulfur management in wheat.  https://webapp.agron.ksu.edu/agr_social/m_eu_article.throck?article_id=2132

https://bookstore.ksre.ksu.edu/pubs/MF2264.pdf

Sulfur deficiency in wheat. Photos by Dorivar Ruiz Diaz, K-State Research and Extension

If your wheat is yellow and before you call the fertilizer applicator, first confirm it is nitrogen and or sulfur and not something else. A key point to nitrogen deficiency is that the cholorsis will be worst on the oldest leafs while new growth is green. If N deficiency is confirmed then figure out how far along your wheat is. If the crop is around hollow stem to Feekes 8,  if you can get the N on soon there is a good chance to get your money back plus. Keep in mind with air temps above 60 degrees UAN will burn the tissue so it is best to use streamer nozzles, which will still burn but the tissue damage is lessened. If you do not have access to streamers you can dilute the UAN with water and use flat fan nozzles. Cutting the UAN with water reduce the impact of leaf burn, I typically recommend at least 2 part UAN to 1 part water, but a 1 to 1 is the safest.

Image of wheat with forage burn from UAN applied with streamer nozzles. Application was made two days prior with air temps where above 80 degrees.

If you have any questions or concerns please feel free to email any questions you may have.

Brian Arnall
b.arnall@okstate.edu

 

On Farm Nitrogen Rate Study Results 18-19.

Vaughn Reed, PhD. Student Precision Nutrient Management|
Brian Arnall Precision Nutrient Management Extension Specialist.

A focal point of the Precision Nutrient Management team is the evaluation of fertilizer timing.  Mr. Souza’s research shared in the blog post How Long Can You Wait has shown, with three years of data, that if fertilizer application is delayed until in-season, not only will optimum yield reached but the protein content will be increased.  The study below which has just had one year of data will provide additional insight.

While the Sousa work focused on a single rate of nitrogen applied over 12 different application dates at on a few OSU research farms this study evaluated a range of N rates applied both pre-plant and in-season on farmer fields across the state. The rationale for a wide distribution was to achieve the primary goal of the study, which was to add regional specificity to the current sensor based nitrogen rate calculator (SBNRC www.nue.okstate.edu). More on that as the research matures. In order to achieve the range needed to reach the goal small plots were set up in numerous locations throughout the central/western portion of the state and hand harvested at maturity.  In Figure 1 below, you can see the sites for the 2018-2019 growing season, as well as the prospective climate zones.

Figure 1. Location of the 2018-19 on farm winter wheat nitrogen response studies. Color shades represent climatic zones.

The trials were set up with four rates (25%, 50%, 75%, 100% of yield potential rate), two timings (pre-plant and in-season application), and a zero N check.  Applications were applied using ammonia nitrate as the source, in order to minimize losses due to volatilization. Eight trials were harvested in six counties, and three different climatological zones.

The data from the first year of this trial confirmed the results seen in the Sousa study. In-season application of nitrogen was more efficient in terms of yield and quality than equivalent rates applied pre-plant. Out of the eight locations harvest, only two had a significant grain yield respond to the addition of N fertilizer.  However, all eight locations the addition of N had significant positive impact on protein content. When looking at pre-plant versus in-season application, grain yield was not statistically significantly different from each other at any location.  Protein content of in-season N was however significantly better than pre-plant application at 5 of the 8 locations.

Figure 2.  below is the results from the Byron and Perkins location.  At both sites all fertilizer application for this location responded above the check plot (0 N).  At Byron we can see an increase in yield up till about 60 bu/ac in both the preplant and topdress application.  The proteins increased with the rate of fertilizer applied.  In both of the responsive locations while in-season N was never statistically greater than pre-plant N in all cases the in-season application had numerically higher yields and protein.

Figure 2. Winter wheat grain yield and protein content results from on farm nitrogen rate studies performed in 2018-19 at Byron Ok, and Perkins Ok.

The next table below is from the Capron location.  This location did not yield a significant increase in yield from the application of N across the board, including timings.  But even though there was no impact on yield protein increased. In both of these locations the increase due to in-season N was statisically greater then the pre-plant. This response is replicated in three other locations in this trial that did not have yield respond.

Figure 3, Winter wheat grain yield and protein content results from on farm nitrogen rate studies performed in 2018-19 at Capron Ok, and Lahoma Ok.

This is one years data, across eight locations. The trials will be continued this fall (2019) for another growing season, and Mr. Souza is repeating his trial as well.  Everything that has done thus far has shown that not only is grain yield not lost by not fertilizing at pre-plant but by delaying all fertilizer applications till in-season , grain yield is maintained if not increases and protein levels are consistently higher.

Figure 4. Crew hand harvesting on farm N rate plots. Hand harvest is preferred because A) we are able to harvest at a higher moisture content ahead of the farmers combines B) we do not have to haul the plot combine across the state.

 

For question, comments, or request for on farm studies please contact.

Brian Arnall
B.arnall@okstate.edu
405-744-1722

Nitrogen rate and timing for a forage wheat crop. Year 1 Results.

Written by
Mr. Bronc Finch, PhD. Student, Precision Nutrient Management. 
Dr. Brian Arnall, Precision Nutrient Management Extension Specialist. 
In cooperation with Dr. James Rogers, Noble Research Institute. 

With the amount of wheat acreage in Oklahoma being utilized for grazing cattle, and much of that land grazed completely instead of harvested for grain, many questions have arose regarding the management of grazed cropland. A major question in the management of a graze-out wheat crop pertains to fertilizer management strategies. A study developed in co-operation with the Noble Research Institute is attempting to answer these questions among others. In 2019 the trial was established at three locations: near Lake Carl Blackwell in Stillwater, OSU South Central Research Station in Chickasha, and Noble Research Dupy farm in Gene Aurty, Oklahoma. Each of these three sites were setup with three nitrogen (N) treatments in Gallagher winter wheat, with 2 pre-plant applications of 60 and 120 pounds per acre, and a 60 pound pre-plant and 60 pound top-dress application. Grazing simulation harvests were taken at two times with the top-dress N being applied after regrowth was noticed following the winter season. The Dupy location was planted late and therefore only had a single harvest at the end of the season. Rising plate meter measurement were collected at feekes 7.5 and represented in the graphs below as Mid-season. The Chickasha location revealed unexpectedly high residual soil N levels, which resulted in no differences in dry matter biomass for the first harvest, which was delayed until early march due to excessive rains. The second harvest at Chickasha did show treatment differences with a 0.4 ton difference between the 60 and 120 lbs preplant N rates and increase of 0.8 ton increase over the 120 lb pre-plant when the additional 60 lbs of N was delayed. LCB had a timely first harvest in December resulting in the 120 lb N application outperforming the 60lb N applications by ≥0.33 tons. The second harvest further showed how the split application of N proves beneficial for biomass production. As the split application increased yields by 1.7 and 2.6 tons over the 120 lb and 60 lb preplant applications, respectively. The Dupy location revealed no significant difference in dry matter biomass yield between N treatments at the time of the rising plate meter measurements or for the final cutting.

Figure 1. Dry matter harvest results for each of the harvest dates from the graze out wheat trials from the Chickasha, Lake Carl Blackwell, and Dupy locations for three fertilizer treatments. 60: 60 lbs of nitrogen applied preplant, 120: 120 lbs of nitrogen applied preplant, 60/60: Split application 60 lbs of nitrogen preplant and 60 lbs applied top-dress. Dupy only had one harvest date, the Mid-season yield is estimated via rise-plate measurements taken at Feekes 7.5.

 

The Chickasha and Lake Carl Blackwell (LCB) locations produced an increase in total yield with both the increase of applied N and the split application of N. The 60 lb increase in applied N at preplant, 60 lbs vs 120 lbs, produced a 0.7 and 1.2 ton increase in total dry matter harvested at Chickasha and LCB, respectively. As expected an increase in N increased the yield of wheat biomass for grazing production. The top-dress application, which was made as a late season post Feekes 6 (hollow stem), produced more biomass for graze-out wheat production. The split application of 60 lbs of N preplant and 60 lbs of N top-dress increased dry matter by .8 and 1.3 tons over 120 lbs applied preplant at Chickasha and LCB, respectively. Chickasha yielded higher biomass production than the LCB location due to increased residual N.

Figure 2. Total dry matter harvest results for the graze out wheat trials from the Chickasha, Lake Carl Blackwell (LCB), and Dupy locations for three fertilizer treatments. 60: 60 lbs of nitrogen applied preplant, 120: 120 lbs of nitrogen applied preplant, 60/60: Split application 60 lbs of nitrogen preplant and 60 lbs applied top-dress.

For the following discussion remember that protein is determined by N concentration, so that a increase in N uptake is the same as an increase in protein. Evaluation of the N uptake (% N in the biomass x amount of biomass harvested) over the season revealed treatment effects at all locations, which was not seen from biomass yield. Chickasha and LCB revealed a 20% or greater increase in N uptake with the 120 lb application over the 60 lb application of N at pre-plant. The late season top-dress application yielded a 3, 27, and 27 percent increase in uptake for Chickasha, LCB, and Dupy locations, respectively, over the 120 lb pre-plant application. Although, these results are expected from these results, there are a few things we did not expect. The 120 lb N application did not increase the N uptake above that of the 60 lb application. However, the split application of N resulted in an additional >40 lbs uptake, aka increased protein.

Figure 3. Total nitrogen uptake results for the graze out wheat trials from the Chickasha, Lake Carl Blackwell, and Dupy locations for three fertilizer treatments. 60: 60 lbs of nitrogen applied preplant, 120: 120 lbs of nitrogen applied preplant, 60/60: Split application 60 lbs of nitrogen preplant and 60 lbs applied top-dress.

This study also includes summer forages with and without additional fertilizer. The study will be continued for multiple years on the same locations to evaluate the impact of management on production and soil characteristics.  But one surprising note has already been made, in all three locations a greatly delay top-dress still increased N-uptake. In two location it significantly increase yield and protein. This data is falling in line with the grain only data (How late can you wait) showing that an application of N at Feekes 6 (Hollow stem) and even shortly after can provide positive return on investments.

 

For any questions for comments please contact
Brian Arnall
b.arnall@okstate.edu
405-744-1722