Home » Fertilizer

Category Archives: Fertilizer

ABOUT ME

osunpk

osunpk

Since 2008 I have served as the Precision Nutrient Management Extension Specialist for Oklahoma State University. I work in Wheat, Corn, Sorghum, Cotton, Soybean, Canola, Sweet Sorghum, Sesame, Pasture/Hay. My work focuses on providing information and tools to producers that will lead to improved nutrient management practices and increased profitability of Oklahoma production agriculture

View Full Profile →

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,485 other followers

Using a Grain Drill Grain Box for Fertilizer, Results and a Calibration guide.

For the last few years I have been challenging people to “Think Out Side the Box” when applying fertilizer. One of these application methods is to use a grain drill to put Nitrogen fertilizer into the soil. Just the act of getting N into the soil will immediately decrease the opportunity for losses. While it seems crazy many picked up on the idea of using grain drills for N applicators. The first year of a two-year study looking at documenting the practice is in the books. With data coming in from three locations, utilizing two drill types (double disk conventional and single disk no-till), the results are quite promising.  The biggest take home from year one was a 2 parter: 1) if conditions are conducive to nitrogen loss from urea volatilization, applying urea with a grain drill in the spring improved efficiency. Conversely if loss potential was low, there was no difference. 2) in some soil conditions the double disk drill could not close the furrow and this reduced the positive impact of using the drill.  The two tables below show the impact application and environment on yield.  Each of the treatments had 60 lbs of nitrogen (as Urea) applied per acre. At Chickasha the first application was made while it was fairly dry and then it rained, but the second application was made during a period in which there was no rain but a fairly significant dew each morning. This can be seen as the small effect volatilization played on the yields of the first application timing. At Lahoma, it was the early applications that had a higher risk of loss with no difference seen later.

 

Partial year one results from the topdress N with a grain drill at Chickasha OK. Timing 1 was late January and timing 2 was late February.

 

Partial year one results from the topdress N with a grain drill at Lahoma Ok. Timing 1 was early January and timing 2 was mid February, and timing 3 was early March.

 

With the results from the first year of the top-dressed drilled nitrogen studies in the books, the interest has been increasing. One question keeps popping up: for grain drills without a fertilizer box, what  do we put our grain box on to apply fertilizer.  At one point the number of inquires hit a critical mass and I sent out my crew to find grain drills and create calibration curves for DAP (18-46-0) and Urea (46-0-0).  The crew did just that.

Now please consider what is presented below is a general calibration. Much like the chart on your grain drills, it will hopefully get you close but the best-case scenario is that each drill is calibrate prior to running. As request are made we will try to add more drills to this list.

To create the following charts the guys located several different makes of drills around the OSU experiment stations. They were instructed to choose setting based on the manufacture seed rate charts in the range of 60, 90, 120 etc.  For each setting they caught a couple of row units for both Urea (46-0-0) and DAP (18-46-0). They caught each setting multiple times to get a good average.

If you look at the tables you can see the Landol 5211, Great Plains 1006NT, and International 5100 are fairly similar, with the John Deere 1560 being a little lower and the John Deere 450 significantly lower at the lower rates.  To use the tables below, consider what kind of grain drill you have and choose to follow one of the drills listed or the average of all five. If you use the average value I would expect most to find they applied a bit more than planned.  To make it even simpler, but less accurate, you can use the % wheat value.  To do this for DAP take your target rate and divide by .88, this value is what you want to set your drill to.  For example for a target rate of 100 lbs DAP per acre use the following formula:  100/.88 = 114.  Choose the manufacturer recommended settings 114 lbs wheat seed per acre.   If you are wanting to apply Urea take your target rate of urea and divide by 0.71.

 

DAP 18-46-0

Table showing the manufacturer wheat rate setting and the resulting amount of DAP 18-46-0.

Graph documenting the manufacturer wheat rate setting and the resulting amount of DAP 18-46-0.

UREA 46-0-0

Table documenting the manufacturer wheat rate setting and the resulting amount of Urea 46-0-0.

Graph documenting the manufacturer wheat rate setting and the resulting amount of Urea 46-0-0.

 

Again, I cannot state this enough, this is a general guide, each drill even of the same manufacture and model will likely be different.  The only way to be certain of the rate applied is to calibrate each drill individually.

Questions or comments please email me at b.arnall@okstate.edu or call 405.744.1722

 

Save the date for the 2017 Oklahoma Crops Conference!

Comparing Ortho/Poly-Phosphate Ratios for In-Furrow Seed Safe Starter Fertilizer

Guest Author, Dr. Jake Vossenkemper; Agronomy Lead, Liquid Grow Fertilizer

New Research Comparing Ortho/Poly-Phosphate Ratios for In-Furrow Seed Safe Starter Fertilizers

Article Summary

  • Ortho-phosphates are 100% plant available, but a high percentage of poly-phosphates in starter fertilizers convert to ortho-phosphate within just two days of application.
  • This quick conversion from poly- to ortho-phosphate suggests expensive “high” ortho starter fertilizers are not likely to result in increased corn yields compared to seed-safe fluid starters containing a higher percentage of poly-phosphate.
  • A field study conducted near Traer, IA in the 2016 growing season found less than 1 bu/ac yield difference between a 50/50 ortho:poly starter and high ortho-phosphate starter.
  • High ortho starters cost more per acer than 50/50 ortho:poly starters, but do not increase corn grain yields.

Poly-phosphates Rapidly Convert to Plant available Ortho-Phosphates

Given poly-phosphates are not immediately plant available and ortho-phosphates are immediately plant available, this gives the promoters of “high” ortho-phosphate starters ample opportunity to muddy the waters. Nevertheless, the facts are that poly-phosphates are rather rapidly hydrolyzed (converted to) into ortho-phosphates once applied to soils, and this hydrolysis process generally takes just 48 hours or so to complete.

In Sept. of 2015, I posted a blog discussing some of the more technical reasons why the ratio of ortho- to poly-phosphates in starter fertilizers should have no impact on corn yields. For those that are interested in those more technical details, I encourage you to follow this link to the Sept. 2015 blog post: https://www.liqui-grow.com/farm-journal/.

While I was relatively certain that the ratio of ortho- to poly-phosphates in liquid starters should have no effect on corn yields, I decide to “test” this idea with a field trial in the 2016 growing season conducted near Traer, IA.

How the Field Trial Was Conducted

In this field trial, we used two starter products applied in-furrow at 6 gal/ac. Each starter had an NPK nutrient analysis of 6-24-6. The only difference between these two starters was the ratio of ortho- to poly-phosphate. One of these starters contained 80% ortho-phosphate and the other contained just 50% ortho-phosphate with the remainder of the phosphorous source in each of these two starters being poly-phosphate. Each plot was planted with a 24-row planter (Picture 1) and plot lengths were nearly 2400 ft. long. In total, there were 5 side-by-side comparisons of the two starter fertilizers that contained different ratios of ortho- to poly-phosphates.

Field Trial Results

In general, there were no large differences in yield between the two starters in any of the 5 side-by-side comparisons, except for comparison number 5 (Figure 1). In comparison number 5, the 50% ortho/50% poly-phosphate starter actually yielded 6 bu/ac more than the high ortho starter. But averaged over the 5 side-by-side comparisons, there was less than 1 bu/ac yield difference between the high and low ortho starters (P=0.6712).

In addition to finding no differences in grain yield between these two starters, the high ortho starters generally cost about $1 more per gallon (so $6/ac at a 6 gal/ac rate) than the low ortho starters. So the more expensive high ortho starter clearly did not “pay” its way in our 2016 field trial.

More Trials Planned for 2017

While our findings agree with other research-comparing ortho- and poly-phosphate starter fertilizers (Frazen and Gerwing. 1997), we want to be absolutely certain that our fertilizer offerings are the most economically viable products on the market. Therefore, I have decided to run this same field trial at one location in northern Illinois in 2017, and at one location in central Iowa in 2017. Stay tuned for those research results this fall.

Picture 1
Planting starter fertilizer trials near Traer, IA in the growing season of 2016.

 

 

 

 

 

 

 

 

 

5 side-by-side comparisons of corn yield from two 6-24-6 starter fertilizers that contained either 50% ortho & 50% poly-phosphate or 80% ortho and 20% poly-phosphate. The field trial was conducted near Traer, IA in the growing season of 2016.

 

 

 

 

 

 

 

 

 

 

 

 

 

References

Franzen D. and J. Gerwing. 2007. Effectiveness of using low rates of plant nutrients. North Central regional research publication No. 341. http://www.extension.umn.edu/agriculture/nutrient-management/fertilizer-management/docs/Feb-97-1.pdf (accessed 8 of Sept 2015).

Nitrogen source selection, the dollars and cents.

A common question most soil fertility specialist receive goes along the lines of “Where anhydrous ammonia has been one of the cheapest N formulations available, dry fertilizers can also be competitive. From a cost and effectiveness perspective, which is going to be the better deal this year?” This question was recently posed to Agronomist Fields Notes of The Wheat Farmer/Row Crop Farmer produced by Layton Ehmke.  What follows is a more in depth version of the response I provide to Layton.

WAKO NH3 applicator used for in-season application.

Unfortunately if all angles are considered this is not an easy answer as determining which nitrogen product is a multi-faceted issue.

First there is the easy aspect, N price.  At the time of writing this the local quote at  Two Rivers Link  is
NH3: 82-0-0 $490 a ton / .30 $ lb N
Urea: 46-0-0 $340 a ton / .37 $ lb N
UAN: 28-0-0 $230 a ton / .41 $ lb N

So on the outside looking in at just the price per 100 pounds of N applied NH3 is $7.00 cheaper than Urea and $11.00 less than UAN.

However the second part of the equation is application cost. Looking at the custom rate for 2015-2016 provide in the OSU Current Report 205  which outlines Oklahoma Farm and Ranch Custom Rates. While these are higher than if the producer owns the equipment it is still a good estimate which accounts for time, service, and repair.  The average NH3 application cost is $13.75 while spreading dry fertilizer is $5.41 per acre. The cost of running a sprayer is similar to sprMy Siteeader per acre. So if application and N cost is taken into account at 100 lbs N per acre NH3 is $1.34 cheaper. However the amount of N really impacts this last calculation at 50 lbs of N per acre urea is $4.84 per acre cheaper while at 200 lbs NH3 is $5.66 per acre cheaper.

The third consideration should be the efficiency of the fertilizer. I could and should right a blog solely on the efficiency of nitrogen fertilizer applications. However that is a big mud hole I do not quite have the time to get into. So what follows are a few general consideration. Spring applied urea on no-till will have a significantly higher potential for N loss, from urea volatilization, than NH3 knifed in. Surface applied urea not quickly incorporated in via rain or tillage (added cost) is easily subject to losses greater than 33%. While NH3 applied with proper soil moisture and good seal will have losses in the single digits.   The losses from UAN is somewhere between Urea and NH3 as only 50% of the N in UAN is urea. Also method (steamer/flat fan), percent canopy coverage, residue level, and weather will play a part. However is all in is applied pre-plant and NH3 but urea or UAN is applied in season there may be more losses from NH3.  The loss of N should be taken into account and added to the cost of N. Lost in could be estimated in two ways, the cost of replacing lost N or the cost of lost yield. To figure replacement take the pounds of N needed (100 lbs) divide by the efficiency, in this case lets say you will lose 20% so 100/.8 = 125.  So to  get 100 lbs of N to the crop you much apply 125, which increased total N cost to $46.25 per acre.  On the flip side if you lose 20% of 100 lbs and needed all 100 lbs of N then you stand to lose (20 lbs N / 2 lbs N per bushel) 10 bushel at $4.00 per bushel.

High clearance sprayer out fitted with streamer bars for UAN application and GreenSeeker RT-200 optical sensors for on the go variable rate nitrogen application.

The final consideration is the ease and or efficiency of use. Some will choose a high priced product because they would prefer not to work with NH3 due to its  challenging properties.  The ease of use is also where the liquids (UAN) shine. On sight storage of UAN requires the least amount of infrastructure and transport is fairly easy.

The application cost of liquid is nearly the same as dry so considering the prices above 100 lbs of N as UAN will cost $4.00 per acre more. However a 100’ sprayer can cover approximately 30 acres per hour more than a spreader with a 60’ swath (Iowa State Pub). Below is a table that provides a few common applicator widths and speeds.  If you consider the average NH3 rig will run 6 mph while spinners commonly run at 12 mph, you can cover significantly more ground with urea.  Add to the equation a big sprayer and flat long field and applicators can covers a lot of ground quickly with UAN.  So if time is of the essences it makes perfect sense to spend more per pound of N  to get it on faster.

Acres covered per hour based on width and speed. High speed not applicable for NH3 application.

In the end the right source often comes down to the specific situation, time, and personal preferences. If you take all of the variables into account, you will be making best decision possible based upon the information available.

If you have any questions or comments please feel free to contact me.
Brian Arnall
Precision Nutrient Management
b.arnall@okstate.edu

Using the GreenSeeker after Freeze Damage

After discussions with producers in southern Kansas I felt the need to bring back this past blog.  It seems that much of (not all) the early planted wheat lost a significant amount of biomass during the winter and the N-Rich Strip GreenSeeker approach is producing what looks to be low yield potentials and N-Rate recommendations.  This should be treated much like we do grazed wheat and the planting date should be adjusted, see below.  It is also important to note that in the past year a new wheat calculator was added to the NUE Site.  http://nue.okstate.edu/SBNRC/mesonet.php. Number 1 is the original OSU SBNRC but the #2 is calculator produced by a KSU/OSU cooperative project.  This is the SBNRC I recommend for use in Kansas and much of the norther tier of counties in OK.

Original Blog on Freeze Damage and the GreenSeeker.

Dr. Jeff Edwards “OSUWheat” wrote about winter wheat freeze injury in a receive blog on World of Wheat, http://osuwheat.com/2013/12/19/freeze-injury/.  As Dr. Edwards notes injury at this stage rarely impact yield, therefore the fertility requirements of the crop has not significantly changed.  What will be impacted is how the N-Rich Strip and GreenSeeker™ sensor will be used.  This not suggesting abandoning the technology in fact time has shown it can be just as accurate after tissue damage.   It should be noted GreenSeeker™ NDVI readings should not be collected on a field that has recently been damaged.

A producer using the N-Rich Strip, GreenSeeker™, Sensor Based N-Rate Calculator approach on a field with freeze damage will need to consider a few points.  First there need to be a recovery period after significant tissue damage; this may be one to two weeks of good growth.   Sense areas that have had the same degree of damage as elevation and landscape position often impacts the level of damage.  It would be misleading to sense a area in the N-Rich strip that was not significantly damaged but an area in the Farmer Practice that took a great deal of tissue loss.

Finally we must consider how the SBNRC, available online at http://nue.okstate.edu/SBNRC/mesonet.php, works.  The calculator uses NDVI to estimate wheat biomass, which is directly related to grain yield.  This predicted grain yield is then used to calculate nitrogen (N) rate.  So if biomass is reduced, yield potential is reduced and N rate reduced.  The same issue is seen in dual purpose whet production.  So the approach that I recommend for the dual purpose guys is the same that I will recommend for those who experienced significant freeze damage.  This should not be used for wheat with just minimal tip burn.

To account for the loss of biomass, but not yield, planting date needs to be adjusted to “trick” the calculator into thinking the crop is younger and has greater potential.   Planting date should be move forward 7 or 14 days dependent  For example the first screen shot shows what the SBNRC would recommend using the real planting date.  In this case the potential yield is significantly underestimated.

The second and third screen shots show the impact of moving the planting date forward by 7 and 14 days respectively.  Note the increase in yield potential, which is the agronomically correct potential for field considering soil and plant condition, and increase in recommended N-rate recommendation.  Adjust the planting date, within the 7 to 14 day window, so that the yield potential YPN is at a level suitable to the field the yield condition and environment.  The number of days adjusted is related to the size and amount of loss.  The larger the wheat and or greater the biomass loss the further forward the planting date should be moved.  In the example below YPN goes from 37 bu ac on the true planting date to 45 bu ac with a 14 day correction.  The N-rate changes from 31 lbs to 38 lbs, this change may not be as much as you might expect.  That is because YP0, yield without additional N, also increases from 26 to 32 bushel.

freeze Zero day moveImage 1. Planting date 9/1/2013.  YPN 37 bu ac-1 and N-Rec 31 lbs ac-1.

Freeze 7 day moveImage 2. Planting date 9/8/2013.  YPN 40 bu ac-1 and N-Rec 34 lbs ac-1.

Freeze 14 day moveImage 3. Planting date 9/15/2013.  YPN 45 bu ac-1 and N-Rec 38 lbs ac-1.

This adjustment is only to be made when tissue has been lost or removed, not when you disagree with the yield potential.  If you have any questions about N-Rich Strips, the GreenSeeker™, or the online SBNRC please feel free to contact me at b.arnall@okstate.edu or 405.744.1722.

The Sufficiency versus Replacement tipping point.

Being educated in the realm of Soil Fertility at Oklahoma State University by the likes of Dr Gordon Johnson and Dr. Bill Raun, Brays Nutrient Mobility Concept and Mitscherlich’s Percent Sufficiency Concept are ingrained in my psyche. In class the concept of Build and Maintain for phosphorus fertilizer management was just briefly visited and not discussed as a viable option.  For anyone in the corn belt, and some Okies, reading this that may seem unusual.  But when I was in school on average in Oklahoma there was about 100-200 K acres of 100 120 bpa (bushel per acre) corn, 300-400 K acres of 40-50 bpa sorghum, and over 5 million acres of 20-30 bpa wheat.  In a state with those average yields, replacing P removed by the crop was not a major concern.

But times are changing.  There is more corn and soybean planted and the achievable yields of all crop are increasing.  While the average winter wheat producer should not be worried about replacement rates of P there is a growing group of producers that should.  This blog will discuss the scenarios in which sufficiency rates are best and those in which replacement should be considered. The OSU factsheet PSS-2266 goes in-depth on each of these methods.

Applying P based on sufficiency will increase soil test P levels in a low yielding environment.  For example on a 20 bpa wheat field that starts out with a soil test P level of 0. Using the sufficiency recommendation each year the soil test value will reach 20 ppm (40 STP) in 20 years. A 30 bpa field would take 30 years.  Yes that is a long time but the soil test value is increasing a little each year. The point of 20 ppm is important because at that level the crop is 95% sufficient, meaning if no P is added the crop will only reach 95% of the fields yield potential.

Using a mass balance approach we can determine at what point does the crop remove more than we can supply with in or near furrow starter fertilizer.  Table 1 shows the values I am using for the discussion.  The first column is just the average amount of P removed per bushel of grain, most of our grains fall in the .4 to .5 lbs P per bushel range.  The second column is the soil test value at which P level is said to be at 90% sufficient. The reason this column is included is that the P2O5 reccomendation for this P level fits into the starter rate for all crops. The low high starter rates are the typical range of P2O5 that is delivered within the safe range (N based) and what I see as the common rates.  These values may be above or below what you use. 

Values used to create Table 2. Phosphorus per bushel of grain. Mehlich 3 soil test value (ppm) at which crop is determined to be 90% sufficient, typical range of P2O5 applied with starter fertilizers, recommended P2O5 rate when soil test P is at 90% sufficiency.

Table 1. Values used to create Table 2. Phosphorus per bushel of grain. Mehlich 3 soil test value (ppm) at which crop is determined to be 90% sufficient, typical range of P2O5 applied with starter fertilizers, recommended P2O5 rate when soil test P is at 90% sufficiency.

Table 2 is pretty simple but it is the center point of this article.  The one caveat I need to add is this assumes strip till or 2*2 / 3*2 is not being used. Table 2 is using the starter range and removal value to determine the yield level the starter can support. The first take on this table may provide some hint on why in a state with 5 million acres of wheat averaging 36 BPA the state soil fertility specialist didn’t focus on replacement rates.  In fact for most for most the the wheat ground P application is higher than removal and P levels are slowly increasing. The big take home from this table should be is my yield level outside this window? If so do not immediately go out in crease your P rates but do take a close look at your system as a whole.  Take a close look at your cropping system, not just one seasons but look at a three or four year cycle.  Add up P applied and P removed, are you positive or negative net balance?  If you are negative take a long hard look at your soil test over time.  Some soils can supply a large amount of P even if you are removing more than you apply.  Other soils will be rapidly drawn down.  Regualr soil testing allows for producers to keep an eye on these values. 

Yield level (bushels per acre) at which P removal is equal to P added in starter fertilizer application.

Table 2. Yield level (bushels per acre) at which P removal is equal to P added in starter fertilizer application.

In the end even if the production warrants the use of replacement rates, the current market may not. For more on that read https://osunpk.com/2016/08/27/now-may-not-be-the-time-for-replacement/.

Speaking of market currently both soybeans and cotton are getting a lot of attention due to how the economics is penciling out. Soybean is a “heavy” P crop pulls .8 lbs per bpa while cotton removes 13 lbs per bales. Both of these crops are salt sensitive and the rate of inforrow is typically quite low providing only about 6 lbs when on 30″ rows.  If you are growing beans or cotton make sure you account for their removal when you talley up your system. 

 Below is a table that I wanted to add, well because I like it. This table illustrates that buildup, and drawdown, rate is heavily impacted by existing soil test value.  In short it takes a lot more fertilizer P to raise soil test p levels in a very low P testing field than it does when soil test P is closer to optimum, 19 lbs per 1 lb at STP of 10 and 5 lbs per lb when STP is 65.  The exact rate changes by soil type and the same holds true to drawn down via crop removal. 

Amount of P2O5 above crop removal needed to increase soil test phosphorous based upon intital soil test results. Adapted From http://www.spectrumanalytic.com/support/library/ff/Soil_test_P_and_K_buildup_and_drawdown.htm "Drawdown of Soil Test Phosphorus and Potassium Levels by Alfalfa, K.L. Wells & J.E. Dollarhide, Univ. of Kentucky, Soil Science News & Views, Vol. 21, No. 3, 2000"

Amount of P2O5 above crop removal needed to increase soil test phosphorous based upon initial soil test results.
Adapted From http://www.spectrumanalytic.com/support/library/ff/Soil_test_P_and_K_buildup_and_drawdown.htm “Drawdown of Soil Test Phosphorus and Potassium Levels by Alfalfa, K.L. Wells & J.E. Dollarhide, Univ. of Kentucky, Soil Science News & Views, Vol. 21, No. 3, 2000”

 Any questions or comments? Feel free to contact me at b.arnall@okstate.edu

 

Components of a variable rate nitrogen recomendation

I recently wrote a article for the  Crops and Soils magazine on the components of a Variable Rate Nitrogen Recommendation. The people at the American Society of Agronomy headquarters were kind enough to make it open access.  What follows in this blog is just a highlight reel.  For the full article visit https://dl.sciencesocieties.org/publications/cns/articles/49/6/24

Components of a variable rate nitrogen recommendation

Variable-rate nitrogen management (VRN) is a fairly hot topic right now. The outcome of VRN promises improved efficiencies, economics, yields, and environmental sustainability. As the scientific community learns more about the crop’s response to fertilizer nitrogen and the soil’s ability to provide nitrogen, the complexity of providing VRN recommendations, which both maximize profitability and minimize environmental risk, becomes more evident.

The components of nitrogen fertilizer recommendations are the same whether it is for a field flat rate or a variable-rate map. The basis for all N recommendations can be traced back to the Stanford equation (Stanford, 1973). At first glance, the Stanford equation is very basic and fairly elegant with only three variables in the equation.

Historically, this was accomplished on a field level through yield goal estimates and soil test nitrate values. The generalized conversions such as 1.2 lb N/bu of corn and 2.0 lb N/bu of winter wheat took account for Ncrop and efert to simplify the process.

 

NCrop

The basis for Ncrop is grain yield × grain N concentration. As grain N is fairly consistent, the goal of VRN methods is to identify grain yield.  This is achieved through yield monitor data, remote sensing and crop models.

 

NSoil

The N provided by, or in some cases removed by, the soil is dynamic and often weather dependent. Kindred et al. (2014) documented the amount of N supplied by the soil varied spatially by 107, 67, and 54 lb/ac across three studies. Much of the soil N concentration is controlled by OM. For every 1% OM in the top 6 inches of the soil profile, there is approximately 1,000 lb N/ac.

efert

Historically, the efficiency at which N fertilizer is utilized was integrated into N recommendations and not provided as an input option, e.g., the general conversion factor for corn of 1.2 lb N/bu. Nitrogen concentration in corn grain ranges from 1.23–1.46% with an average of 1.31% (Heckman et al., 2003) or 0.73 lb N/bu. Therefore, the 1.2-lb value is assuming a 60% fertilizer use efficiency. More recently, recommendations have been to incorporate application method or timing factors in attempt to account for efficiencies.

Summary 

 

While a VRN strategy that works across all regions, landscapes, and cropping systems has yet to be developed, the process of nitrogen management has greatly improved and is evolving almost daily. Those methods that are capable of determining the three inputs of the Stanford equation while incorporating regional specificity will capture the greatest level of accuracy and precision. Ferguson et al. (2002) suggested that improved recommendation algorithms may often need to be combined with methods (such as remote sensing) to detect crop N status at early, critical growth stages followed by carefully timed, spatially adjusted supplemental fertilization to achieve optimum N use efficiency. As information and data are gathered and incorporated and data-processing systems improve in both capacity and speed, the likelihood of significantly increasing nitrogen use efficiency for the benefit of the society and industry improves. The goal of all practitioners is to improve upon the efficiencies and economics of the system, and this should be kept in mind as new techniques and methods are evaluated. This improvement can be as small as a few percentages

 

 

This article is published in the Crops and Soils Magazine doi:10.2134/cs2016-49-0609. The full article includes more details on the components plus concepts of integration.