Home » Posts tagged 'NUE'

Tag Archives: NUE

ABOUT ME

osunpk

osunpk

Since 2008 I have served as the Precision Nutrient Management Extension Specialist for Oklahoma State University. I work in Wheat, Corn, Sorghum, Cotton, Soybean, Canola, Sweet Sorghum, Sesame, Pasture/Hay. My work focuses on providing information and tools to producers that will lead to improved nutrient management practices and increased profitability of Oklahoma production agriculture

View Full Profile →

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 4,415 other followers

Nitrogen Source: What’s “cheap” now may be lost later

Raedan Sharry, Ph.D. Student, Precision Nutrient Management
Brian Arnall, Extension Specialist, Precision Nutrient Management

Note, this blog is focused on grain only winter wheat production.

Crop producers looking to increase profits often consider how to reduce costs without sacrificing yield and/or quality. This applies to essentially all production functions including nitrogen application. Winter wheat growers in the southern Great Plains have a wide number of options available to them when considering nitrogen source and application technique. At the time of writing (08/27/2021) fertilizer prices obtained from the Two Rivers Farmers Cooperative are as follows ($/unit): UAN (28-0-0) $0.62, NH3 (82-0-0) $0.45, and Urea (46-0-0) $0.62. These price levels equate to approximately a 57% increase in urea cost, 65% increase in UAN28, and a 65% increase in NH

Application Timing

Winter wheat producers in the southern plains have historically applied nitrogen (N) fertilizer prior to planting, often utilizing anhydrous ammonia for application due to its generally lower price point per unit of N relative to other sources. However, research at Oklahoma State shows that if the total N application is delayed until approximately feekes 5 to feekes 7 stages (jointing) yields were increased 23% of the time while grain protein was increased 68% of the time. By delaying N application to later in the growing season N is more likely to be available when the crop requires by avoiding conditions conducive to losses. Further reading on delaying nitrogen application can be found here (https://osunpk.com/2020/09/10/value-of-in-season-application-for-grain-only-wheat-production/)

A study located a Perkins, OK observing yield and protein response provides an example of an expected response to delayed N. In this study 3 N fertilizer rates (180, 90 and 45/45 split) across 5 different timings (Pre, 30, 60, 90, and 120 days after planting) where investigated. Grain yield was maximized by the 180 lb. rate applied 60 days after planting, while protein was maximized at the 120 days after planting timing. This same trend continues across all N rate levels as the later N applications whether at 60 or 90 increased yield relative to the pre while the 120 days after planting application maximized protein level regardless of rate level. However, maturity of the 120 day application treatment was severely delayed. This experiment shows the ability to sustain yield while decreasing N rate if N application is pushed to later in the season to avoid conditions that lead to N losses as displayed by the 90 lbs. at 90 days after planting treatment compared to the 180 lb. pre-plant rate.

Winter Wheat grain yield (bushels per acre) and grain protein (%) results from a study looking at application of nitrogen. Zero, is zero N check, 180 and 90 treatments were all of the 180 or 90 lbs N per acre was applied at pre-plant, 30, 60, 60, or 120 GDD>0 after planting. The 45s refers to split application were 45 lbs N was applied at pre-plant and an additional 45 lbs N was applied at 30, 60, 60, or 120 GDD>0 after planting. All N applied at NH4NO3. Pre (4.11.20), 30 (8.12.20), 60 (2.23.21), 90 (3.19.21), 120 (5.2.21). Blue bars are grain yield, orange dots protein.

Application Cost

Application costs are directly related to choice of source utilized. For instance; anhydrous ammonia application is predicated on the use of a pulled implement such as a low disturbance applicator for in-season application or a tillage implement for pre-season application. This is compared to other sources such as urea or ammonium nitrate which may be broadcast, or UAN that can be applied using a sprayer. The relationship between source and cost of application is inherently related to the application efficiency of the equipment used. Table 2 below provides a rough idea of cost associated with different application methods. (Information Retrieved from Iowa State). Fuel cost assumed at $2.60/gal. Labor cost assumed to be $15.00/hr.

ImplementOperating EfficiencyFuel cost/acLabor Cost/acOperating cost/ac
90’ SP Sprayer~78 ac/hr$0.34$0.19$0.53
60’ Dry Spreader~30 ac/hr$0.39$0.50$0.89
35’ Sweep Plow~21 ac/hr$1.43$0.71$2.14

In many operations across the southern plains efficiency has become a key factor in decisions such as input selection and equipment purchases. This has come in response to the need to cover more acres with less labor. With that in mind and looking back to table 2 it is easy to see that a self-propelled sprayer is likely able to cover more acres than other equipment options. This most likely should be considered when considering options for N management in the wheat crop.

Summary

With wheat sowing quickly approaching for many and field preparation nearing completion it is important to consider your nitrogen management options. Delayed N application allows for flexibility in management plan and depending on source utilized may increase application efficiency over pre-plant applications requiring a tillage implement. As fertilizer prices continue to remain high it is also important to consider the likely increase in N use efficiency due to applying N closer to when N requirement is peaking. Controlling cost while continuing to maximize output is imperative to sustainable profitability in crop production.

Any Question or Comments please feel free to reach out me.
Brian Arnall b.arnall@okstate.edu

Using a Grain Drill Grain Box for Fertilizer, Results and a Calibration guide.

For the last few years I have been challenging people to “Think Out Side the Box” when applying fertilizer. One of these application methods is to use a grain drill to put Nitrogen fertilizer into the soil. Just the act of getting N into the soil will immediately decrease the opportunity for losses. While it seems crazy many picked up on the idea of using grain drills for N applicators. The first year of a two-year study looking at documenting the practice is in the books. With data coming in from three locations, utilizing two drill types (double disk conventional and single disk no-till), the results are quite promising.  The biggest take home from year one was a 2 parter: 1) if conditions are conducive to nitrogen loss from urea volatilization, applying urea with a grain drill in the spring improved efficiency. Conversely if loss potential was low, there was no difference. 2) in some soil conditions the double disk drill could not close the furrow and this reduced the positive impact of using the drill.  The two tables below show the impact application and environment on yield.  Each of the treatments had 60 lbs of nitrogen (as Urea) applied per acre. At Chickasha the first application was made while it was fairly dry and then it rained, but the second application was made during a period in which there was no rain but a fairly significant dew each morning. This can be seen as the small effect volatilization played on the yields of the first application timing. At Lahoma, it was the early applications that had a higher risk of loss with no difference seen later.

 

Partial year one results from the topdress N with a grain drill at Chickasha OK. Timing 1 was late January and timing 2 was late February.

 

Partial year one results from the topdress N with a grain drill at Lahoma Ok. Timing 1 was early January and timing 2 was mid February, and timing 3 was early March.

 

With the results from the first year of the top-dressed drilled nitrogen studies in the books, the interest has been increasing. One question keeps popping up: for grain drills without a fertilizer box, what  do we put our grain box on to apply fertilizer.  At one point the number of inquires hit a critical mass and I sent out my crew to find grain drills and create calibration curves for DAP (18-46-0) and Urea (46-0-0).  The crew did just that.

Now please consider what is presented below is a general calibration. Much like the chart on your grain drills, it will hopefully get you close but the best-case scenario is that each drill is calibrate prior to running. As request are made we will try to add more drills to this list.

To create the following charts the guys located several different makes of drills around the OSU experiment stations. They were instructed to choose setting based on the manufacture seed rate charts in the range of 60, 90, 120 etc.  For each setting they caught a couple of row units for both Urea (46-0-0) and DAP (18-46-0). They caught each setting multiple times to get a good average.

If you look at the tables you can see the Landol 5211, Great Plains 1006NT, and International 5100 are fairly similar, with the John Deere 1560 being a little lower and the John Deere 450 significantly lower at the lower rates.  To use the tables below, consider what kind of grain drill you have and choose to follow one of the drills listed or the average of all five. If you use the average value I would expect most to find they applied a bit more than planned.  To make it even simpler, but less accurate, you can use the % wheat value.  To do this for DAP take your target rate and divide by .88, this value is what you want to set your drill to.  For example for a target rate of 100 lbs DAP per acre use the following formula:  100/.88 = 114.  Choose the manufacturer recommended settings 114 lbs wheat seed per acre.   If you are wanting to apply Urea take your target rate of urea and divide by 0.71.

 

DAP 18-46-0

Table showing the manufacturer wheat rate setting and the resulting amount of DAP 18-46-0.

Graph documenting the manufacturer wheat rate setting and the resulting amount of DAP 18-46-0.

UREA 46-0-0

Table documenting the manufacturer wheat rate setting and the resulting amount of Urea 46-0-0.

Graph documenting the manufacturer wheat rate setting and the resulting amount of Urea 46-0-0.

 

Again, I cannot state this enough, this is a general guide, each drill even of the same manufacture and model will likely be different.  The only way to be certain of the rate applied is to calibrate each drill individually.

Questions or comments please email me at b.arnall@okstate.edu or call 405.744.1722

 

Using the GreenSeeker after Freeze Damage

After discussions with producers in southern Kansas I felt the need to bring back this past blog.  It seems that much of (not all) the early planted wheat lost a significant amount of biomass during the winter and the N-Rich Strip GreenSeeker approach is producing what looks to be low yield potentials and N-Rate recommendations.  This should be treated much like we do grazed wheat and the planting date should be adjusted, see below.  It is also important to note that in the past year a new wheat calculator was added to the NUE Site.  http://nue.okstate.edu/SBNRC/mesonet.php. Number 1 is the original OSU SBNRC but the #2 is calculator produced by a KSU/OSU cooperative project.  This is the SBNRC I recommend for use in Kansas and much of the norther tier of counties in OK.

Original Blog on Freeze Damage and the GreenSeeker.

Dr. Jeff Edwards “OSUWheat” wrote about winter wheat freeze injury in a receive blog on World of Wheat, http://osuwheat.com/2013/12/19/freeze-injury/.  As Dr. Edwards notes injury at this stage rarely impact yield, therefore the fertility requirements of the crop has not significantly changed.  What will be impacted is how the N-Rich Strip and GreenSeeker™ sensor will be used.  This not suggesting abandoning the technology in fact time has shown it can be just as accurate after tissue damage.   It should be noted GreenSeeker™ NDVI readings should not be collected on a field that has recently been damaged.

A producer using the N-Rich Strip, GreenSeeker™, Sensor Based N-Rate Calculator approach on a field with freeze damage will need to consider a few points.  First there need to be a recovery period after significant tissue damage; this may be one to two weeks of good growth.   Sense areas that have had the same degree of damage as elevation and landscape position often impacts the level of damage.  It would be misleading to sense a area in the N-Rich strip that was not significantly damaged but an area in the Farmer Practice that took a great deal of tissue loss.

Finally we must consider how the SBNRC, available online at http://nue.okstate.edu/SBNRC/mesonet.php, works.  The calculator uses NDVI to estimate wheat biomass, which is directly related to grain yield.  This predicted grain yield is then used to calculate nitrogen (N) rate.  So if biomass is reduced, yield potential is reduced and N rate reduced.  The same issue is seen in dual purpose whet production.  So the approach that I recommend for the dual purpose guys is the same that I will recommend for those who experienced significant freeze damage.  This should not be used for wheat with just minimal tip burn.

To account for the loss of biomass, but not yield, planting date needs to be adjusted to “trick” the calculator into thinking the crop is younger and has greater potential.   Planting date should be move forward 7 or 14 days dependent  For example the first screen shot shows what the SBNRC would recommend using the real planting date.  In this case the potential yield is significantly underestimated.

The second and third screen shots show the impact of moving the planting date forward by 7 and 14 days respectively.  Note the increase in yield potential, which is the agronomically correct potential for field considering soil and plant condition, and increase in recommended N-rate recommendation.  Adjust the planting date, within the 7 to 14 day window, so that the yield potential YPN is at a level suitable to the field the yield condition and environment.  The number of days adjusted is related to the size and amount of loss.  The larger the wheat and or greater the biomass loss the further forward the planting date should be moved.  In the example below YPN goes from 37 bu ac on the true planting date to 45 bu ac with a 14 day correction.  The N-rate changes from 31 lbs to 38 lbs, this change may not be as much as you might expect.  That is because YP0, yield without additional N, also increases from 26 to 32 bushel.

freeze Zero day moveImage 1. Planting date 9/1/2013.  YPN 37 bu ac-1 and N-Rec 31 lbs ac-1.

Freeze 7 day moveImage 2. Planting date 9/8/2013.  YPN 40 bu ac-1 and N-Rec 34 lbs ac-1.

Freeze 14 day moveImage 3. Planting date 9/15/2013.  YPN 45 bu ac-1 and N-Rec 38 lbs ac-1.

This adjustment is only to be made when tissue has been lost or removed, not when you disagree with the yield potential.  If you have any questions about N-Rich Strips, the GreenSeeker™, or the online SBNRC please feel free to contact me at b.arnall@okstate.edu or 405.744.1722.