Home » Fertilizer (Page 2)

Category Archives: Fertilizer

ABOUT ME

osunpk

osunpk

Since 2008 I have served as the Precision Nutrient Management Extension Specialist for Oklahoma State University. I work in Wheat, Corn, Sorghum, Cotton, Soybean, Canola, Sweet Sorghum, Sesame, Pasture/Hay. My work focuses on providing information and tools to producers that will lead to improved nutrient management practices and increased profitability of Oklahoma production agriculture

View Full Profile →

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 3,940 other followers

Managing Protein in Hard Red Winter Wheat_Repost and Update.

As I write this on May 5, 2019, the wheat is at or nearing flowering and Stillwater just received another 2.22 inches last night helping the 30 day rain total to be just shy of 9 inches. Its wet, cool, and the wheat has truly gone from rags to riches (the crop not the market). I have been regularly fielding calls on late season N and protein. I thought it would be a good time to repost my previous protein blog and add some thoughts and updates. Since the original post we have more data on nitrogen (N) timing work and one year of data from a trial we call “Protein Progression”.  First if you are interested in the timing study the full blog summarizing 2 years of work can be seen here How long can wheat wait for Nitrogen? . But the short short version was that two years in a row delaying the application of ANY nitrogen until very late in the season, past hollow stem, resulted in the best combination of yield and protein. Meaning even when wheat was yellow and stunted yields and quality recovered when N was applied at or shortly after hollowstem. This work is being continued and expanded this year. I have only shared the Protein Progression results in a few presentations, because they do not tell a consistent story. For a few years now I have been giving this advice when asked about late season nitrogen. Based upon the work I have done, this year is my 11th wheat crop in this position and I have always had at least 1 study with late N, that when nitrogen was applied at flag leaf the probability of a positive return on investment was below 50% and closer to 33%. Very seldom did I see the flag leaf applications of nitrogen provide much benefit. At the flag leaf stage when there was a positive benefit it could be yield, protein or both. When it came to anthesis (flowering) applications the probably increased to closer to a 66%-75% chance of positive impacts (Understand these percentages are drawn from my experiential learning across many environments, I have not yet run the data to determine exact values). Late applications in the right environment could increase protein by up to 2% and in the wrong environment, devastate yield due to burn. The weather needs to be cooler and humid to reduce the potential of burn and the rate of nitrogen must high enough to actually impact protein levels. Per each 1% of protein concentration of wheat grain there is 0.1 lbs N per bushel. So to increase to increase the protein content of a 60 bushel wheat crop by 1%, 6 lbs much be converted from fertilizer to protein.  To get this amount of nitrogen on the crop without burning it up I have been using UAN (28-0-0) and water at a ratio of 1:1 putting on 20 total gpa. When applied this way I have not seen burn, I do however avoid spraying when its hot, windy with low humidity.
Below are last years results of the Protein Progression study. In this I wanted to look at N application timing pre vs post, the addition of sulfur (many sources state added sulfur increases yield), flag and anthesis application. Last year we had locations near Stillwater (LCB) and Chickasha. Both yielded in the 60 bushel range which was OK but well below the five year average of both sites. At the LCB we saw a great response to N fertilizer. The more it was delayed the better off yields were. We saw a consistent negative impact of S at top-dress, which is a result I can not explain, there was no crop damage due to application. The flag leaf N application significantly increased yields, at flag leaf there was evidence of N deficiency. And the anthesis application of N had no impact on protein. At Chickasha where the none fertilized check yielded 53 bushels, the response to N was reduced. Sulfur had no impact on yield or protein, flag lead N and anthesis N increased protein by about 1%.

What did I learn from those studies, I confirmed the response to late N is not very predictable. The low protein site (LCB average protein of 11.75) did not respond to late N but the high protein location (Chickasha’s average protein content was 15%) did. I was able to see N at flag leaf did impact yield when N deficiency was noted. It also confirmed this study will be continued for multiple years. The more environments we can get data from the better we can predict response/non response.

 

Results from the 2017-18 Protein Progression Study. The graphic on the left is from Lake Carl Blackwell near Stillwater, the center table is the treatment structure and the graphic on the right includes the yield and protein results from Chickasha. Nitrogen rate (pre + top) was 120 lbs N per acre, top-dress S rate was 10 lbs. The nitrogen rate at flag leaf and anthesis was 24 lbs N per acre, while the anthesis S rate was 10 lbs.  N source was UAN for all application and S source was ammonium thiosulfate. For flagleaf and athesis applications water was used as a carrier at a 1 to 1 ratio with the fertilizer.

If you have any questions feel free to send me an email at b.arnall@okstate.edu.

Brian

Original Post Sept 27, 2017

A result of the 2016-17 winter wheat crop was a significant amount of discussion focused on protein levels. For two years running now, the protein levels have been low across the board.  Low protein brings in a challenge to sell, could impact local basis, and even more concerning is that low protein is an indicator that nitrogen was limiting during grain fill. Therefore, the field maximum yield potential was not achieved. In this blog, we talk about what protein is, what can be done to maintain a good protein level, and what can be done to increase protein if desired.

First, the definition of protein is any of a class of nitrogenous organic compounds that consist of large molecules composed of one or more long chains of amino acids and are an essential part of all living organisms, especially as structural components of body tissues such as muscle, hair, collagen, etc., and as enzymes and antibodies. Protein is also one of the many attributes that determines end-use quality and marketability of winter wheat. Sunup TV met with Dr. Carver in the baking and milling lab to create a great video discussing wheat quality impact on baking and milling.

 

We determine protein by measuring the percent of nitrogen in the grain and multiplying by a factor of 5.7. So if the grain has N % of 2.5, the protein content is 14.25.  The amount of N in the grain is affected by many variables such as weather during grain fill, yield level, and N availability during grain fill.  If weather is conducive to good grain fill and test weight is high, we will often see protein values dip. On the other hand when grain fill conditions are hot and dry and we have light test weight, wheat protein will be higher. Research has shown (Figures 1 and 2) that generally as yields increase protein levels decrease. Of course if N is limited during grain fill, the N available for the grain is reduced, and the plant is forced to get all grain N from re-immobilizing N in the leaf tissue.

Fig 1, Yield and protein averages from all of the OkState Long Term fertility trials. Data courtesy Dr. Bill Raun.

Fig 2, Grain protein and yield of from intensively managed wheat. Data Courtesy Dr. Romulo Lollato KSU.

 

Maintaining Protein, and yield.

Managing nitrogen to maintaining protein and maximizing yield comes down to making sure that N is available at critical growth periods. With wheat, the critical uptake stage is typically the time frame between hollow stem and soft dough.  The two graphs below show nitrogen uptake in wheat and barley.  If the same graph was made for dual purpose wheat, the upward swing would start sooner but would follow the same general trend.

Fig 3, Nutrient Uptake of Wheat found in “Agricultural and Biological Sciences » “Crop Production”, ISBN 978-953-51-1174-0, Chapter 5 By Juan Hirzel and Pablo Undurraga DOI: 10.5772/56095″

Fig 4, Nitrogen uptake in Barley at two nitrogen rates. http://apps.cdfa.ca.gov/frep/docs/N_Barley.html

When it comes to making sure N is available during this time of peak need, the only way we can do that is apply just before it is needed.  This means split application.  While putting all the nitrogen out pre-plant as anhydrous ammonia is the cheapest method, it is also the method that provides the lowest nitrogen use efficiency and is most likely to show deficiencies late in the season. One of the challenges with 100% preplant N application is that years with good yield potential coincide with years with good/high high rainfall, which means more nitrogen loss.  Some interesting results from studies implemented in the 2016-17 cropping season showed the importance of nitrogen application timing. The study is determining how long nitrogen application can be delayed after the N-Rich strip becomes visible (https://osunpk.com/2013/09/19/nitrogen-rich-strips/). For the study, 90 lbs of N was applied on one of the treatments at planting When that plot became visibly greener or bigger than the rest, N application was triggered. After the 0 DAVD (Days after visual difference where the day had growing degree days >0), another treatment was applied every 7 growing days for 63 growing days.  Each plot, excluding the zero N check, received 90 lbs as NH4NO3 (we use this to take the variable of volatilization out of the data). In all cases, 90 lbs applied in late January to early February was better than 90 lbs pre-plant. Keep in mind there was 0 N applied at planting for each DAVD application timing; yet, we still hit 50-80 bushel wheat with nothing but in-season N. This is the result of supplying the N when the plant needs it. I should add this is just one year of data, and every year is different. The study is being replicated again this year and will be highlighted at the Lahoma field day.

 

Fig 5, Results from the 2016-2017 delayed nitrogen study led by Mr. Joao Bigato Souza. The trials consisted of a preplant plot, unfertilized check plot, and then a series treatments in which N application was based on days from a visual difference between the pre-plant and check. All fertilized plots received 90 lbs N as NH4NO3. DAVD is days after visual difference. (Error in bottom left graph, the last date should be March 27 not April 4)

For dual-purpose wheat, the total amount of N expected for the forage production needs to be applied pre-plant. Oklahoma State recommends 30 lbs N for every 1,000 lbs of forage expected For grain-only wheat, there needs to be only 20 to 40 lbs of N available to the crop when planted (this includes residual N). The remaining N should be applied at green up or early spring.  The only way to ensure that N is applied when the crop needs it is to utilize the N-Rich Strip method. Having a N-Rich strip in your field lets you know when the wheat needs more nitrogen and when it does not.

Fig 6. Nitrogen Rich Strip (N-Rich) showing up in a No-till wheat field.

Two years testing the N-Rich Strip and Sensor based nitrogen rate calculator (SBNRC) from the Texas boarder to the Kansas boarder showed that the SBNRC on average reduced N but maintained yield and protein when compared to standard farmer practice (Table 1).

Table 1. Results from testing the Nitrogen Rick Strip and Sensor Based Calculator Method across Oklahoma wheat fields.

Increasing Protein

Some producers may plan to market high protein for a premium if available.  Fortunately, there are opportunities to increase protein via management. While most of the strategies for increasing protein happen later in the growing season, some of the early decisions can be a significant contributing factor. Variety selection and keeping the plant healthy and free of competition (i.e., pest management) throughout the growing season are going to increase the opportunity to produce high protein wheat.  After that, the equation goes back to Figures 3 and 4 and making sure the crop has access to nitrogen during peak periods, including grain fill.  If you will note, the bottom two graphs of Figure 5 both show significant increases in protein on the later applications. For both locations, this was when N (90 lbs N ac-1) was applied after full flag leaf emergence.  There has been a significant amount of work at OSU looking at late application of N stretching back into the 1990s http://nue.okstate.edu/Index_Publications/Foliar_N_Curt.pdf. The focus has been looking at timing, source, and rate. The take home of decades of work can be summarized as such.  Yes, protein can be increased with late season application, but not always. Applying N at or after flowering has a significantly greater probability of increasing protein than a application at flag-leaf. Source of N has had little impact if managed properly (UAN, 28-0-0, has to be watered down so that it does not burn the plant). The rate of N does matter quite a bit. Most of the work suggests that for every pound of N applied, the percent grain protein could increase by .05%. So to increase protein from a 12.5% to 13.5%, it would require approximately 20 lbs of N per acre.  My work has shown the same trend that a 20 lbs application at post-flowering had more consistent increases in protein than lower rates at the same time or similar rates applied at flag leaf.

This wheat season we are looking to improve our knowledge of management on protein content through multiple studies by continuing the evaluation of varieties and management practices.

If you have any questions for comments please feel free to contact me.
Brian A.
B.arnall@okstate.edu

Rain makes grain, but also washes Nitrogen away.

Precipitation in the southern Great Plains is never something you take for granted. As I write this blog I am just wondering when it will be dry enough for long enough to finishing sowing my wheat, but I also remember just how dry it was last winter. The last three months, Aug-Oct rank as one of wettest in the states recorded history. Below are the 30, 60, and 90 day rain fall totals (as of 10.26.18) from Mesonet. By the 60 day map most the wheat belt is showing double digits and the 90 day maps shows a lot of our graze out wheat regions in the 20+ inch realm.

30 Day rainfall totals retrieved from Mesonet on 10.26.18.  Putting recording window from Sept 26-Oct 26. http://www.mesonet.org/index.php/weather/category/rainfall

60 Day rainfall totals retrieved from Mesonet on 10.26.18.  Putting recording window from Aug 27 – Oct 2 http://www.mesonet.org/index.php/weather/category/rainfall

90 Day rainfall totals retrieved from Mesonet on 10.26.18. Putting recording window from July 28-Oct 26 http://www.mesonet.org/index.php/weather/category/rainfall

I bring up graze-out wheat for a reason, to get as much forage as possible it is planted as early as possible. I know of fields that were seeded in July and early August. And to produce this great quality forage, nitrogen fertilizer is applied pre-plant. It just so happens that this July more fertilizer was sold than any other month since I have been in Extension. In July producers bought nearly 1/3 of totoal tons of fertilizer what is typically sold in a single year. While a portion of this may have been pre-purchased for later delivery, I know a lot of it made it to the field. To see why this matters, lets take a look at the nitrogen cycle.

 

The nitrogen cycle is made up of a central component (Organic Matter), three N sinks (Microbial/Plant, Atmosphere, Nitrate {NO3}), four loss pathway (Ammonia Volatilization, Leaching, Plant Loss, Denitrification), and five additions (N2 Fixation, Fertilization, Lightning/Rainfall, Industrial Fixation, Plant/Animal Residues). We are going to spend the next bit talking about what is happening in the bottom right corner and left hand side.

When we put anhydrous ammonia (NH3) in the soil it pulls a hydrogen (H) from water and turns in to ammonium (NH4). Urea goes through a similar process but has to first be converted to NH3 by the enzyme urease.  Ammonium is important because it is a positively charged ion (cation) which will be fixed on the cation exchange sites. This means is it not going to move around in soil, but is readily available for plant uptake. However when NH4 is in a soil with temperatures above 50 degrees and in the presence of oxygen the two bacteria nitrosomonas and nitrobacter convert it to NO3. Given warm soils and our good soil moisture levels it very likely that any N applied in July or August would have converted 50% or more of its NH4 into the NO3 form by this point.

Nitrification portion of the Nitrogen Cycle. Complete Nitrogen Cycle. http://psssoil4234.okstate.edu/lecture

Nitrate is a negatively charged ion (anion) which is repelled from the negatively charged soil. This is beneficial for plants as when they take up water, NO3 is taken up though mass flow. The downside is that since NO3 is in the soil solution, where ever the solution goes so does the NO3, that is called leaching. So in well drained soils the recent rains will have caused a fair amount of leaching.  For some areas the NO3 that is leached below the root zone and could potentially be drawn back up as the soils dry. But there are going to more scenarios in which the N is gone, or at least gone elsewhere. In a sloping field the soil water will hit a limiting layer or clay increase layer and move down slope. I have already seen many wheat fields that are showing yellowing on side slopes.

Unfortunately leaching isn’t the only way we are losing N during this wet cycle. Denitrification occurs when the soil is saturated and oxygen (O) levels are depleted.  In anaerobic conditions, microbes strip O from NO3 reducing it gaseous forms. Typically it takes about one week of standing water to start seeing high levels of denitrification.

Nitrate loss pathways of the Nitrogen Cycle.
Complete Nitrogen Cycle. http://psssoil4234.okstate.edu/lecture

What does this all mean? Conservative guess is that for July or early August applied N we could be looking at losses of 50% or more.  This is a rough guesstimate of course, a fields soil texture, slope, soil type, tillage etc will all impact the loss amount.  As the date of application moves closer to Oct there will have been less nitrification and less total rainfall. What I can say with 100% certainty is that if N fertilizer was applied any time from July through early September, N has been lost.

So whats my N manage recommendations? First, foremost, and always This is the perfect scenario where N-Rich Strips will pay off! (Here’s a blog on N-Rich Strips https://osunpk.com/2013/09/19/nitrogen-rich-strips/). The N-rich Strip will allow you to detect N stress early, which for grazers is important. Close attention needs to be paid on fields with wheat being grown for grazing, N deficiencies will reduce forage production and gain. If the N-Rich strip shows up or there are signs of N deficiencies (yellowing of older leaves from the tip toward the collar) its time to be looking at applying N. For grain only fields we have some time. It is important though that as we get closer to spring and hollow stem we are taking care of the crops N needs. Here is a link to a blog on reading the N-Rich Strips to get a N rate rec https://osunpk.com/2014/02/24/sensing-the-n-rich-strip-and-using-the-sbnrc/ and here is a link to one of my latest blogs on Timing of Nitrogen Application for Wheat https://osunpk.com/2018/10/01/how-long-can-wheat-wait-for-nitrogen/.

For more information please contact me at b.arnall@okstate.edu

 

Below is a Sunup TV video on the subject of Nitrogen Losses with the recent rains.

 

 

 

Planting Date and Seeding Rate Considerations for Winter Wheat

As the current weather pattern has this state headed to one of its wettest, if not the wettest, Aug-Sept-Oct on records, this is good information. As we start progressing towards November wheat seeding rate needs to be increased to compensate for lost tiller production. Keep in mind I have not done ANY research on seeding rate. After the mid Oct I bump my seeding rate to 70-75 lbs per acre. As we hit November I am in the 80s.

World of Wheat

With this August setting up similar to last year and the need for wheat pasture for a number of producers this fall, we will likely see drills start rolling in parts of the state by the end of the month. As planting gets going, here are a couple considerations when it comes to planting dates and seeding rates for Oklahoma winter wheat.

Planting date:

The optimal window for dual-purpose wheat for most of Oklahoma is between September 10-20 (approximately day 260 in Figure 1). This window represents a trade-off between maximizing forage production while minimizing potential grain yield loss. Earlier planting dates, last week into this week for example, will provide more fall forage potential, but this is usually not recommended unless the wheat is intended to be produced for grazing, or “grazeout.” Planting dates for grain-only producers will be at least 2-3 weeks later than what is the ideal…

View original post 297 more words

How long can wheat wait for Nitrogen?

Joao Bigatao Souza, PhD. Student Precision Nutrient Management
Brain Arnall Precision Nutrient Management Extension Specialist.

The N-rich strip method allows wheat producers a greater window of decision making regarding the application of nitrogen (N) fertilizers. Besides having greater accuracy in N rates than standard methods (based on the SBNRC – OSU) also helps to reduce costs in the production system and to preserve the environment avoiding over N applications.

With the experiments performed in the last two crop seasons (2016/18 and 2017/18), we can now be even more accurate with regard to the best application time to increase the N use efficiency by the crop. The objective of our study was to determine the impact of prolonged nitrogen deficiency on winter wheat grain yield and protein. Eight studies were conducted with 11 N application timings in no-till dryland conditions. A pre-plant treatment of 90 lbs ac-1 of N was broadcast applied as ammonium nitrate (AN). We used AN as our source because we wanted to measure the crops ability to recover and eliminate the impact of source efficiencies. When visual symptom differentiation (VSD) was documented between the pre-plant and the non-fertilized check, i.e the N-Rich Strip showed up, top-dress applications were performed every seven growth days (GDD> 0) (https://www.mesonet.org/index.php) until 63 growth days after VSD at all sites. The only N the treatments received where applied according to treatment structure. No preplant N was applied other than trt 1, and all locations had residual N under 15 lbs 0-6” sample.

The first visual response to fertilizer N ranged from November 11 to February 5 (Table 1). The soil can have residual N from the previous season which can supply the subsequent crop in the beginning of the development what makes the wheat not demonstrate any sign of stress in the early season. For example LCB2017 a and b which were located 100 yards apart but under a different point in the crop rotation (LCBa was wheat after wheat and LCBb wheat after canola) had a 30 day difference in date of first N response. This range in first and last dates allowed us to evaluate N application over a wide range of dates and determine whether the first sign of stress is actually the best indicator of top dress application timing.

Table 1 shows the planting date, date of first visual difference (0DAVD) and each of the application dates for all locations. Different colors represent individual months. Hollow stem occurred approximately Feb 20 in the 2017 crop and March 10th in the 18 crop.

 

Image of the 2016-17 Perkins location. Image collected March 21 2017.

As shown in the Tables 2 and 3 below only three of the 78 comparisons made back to the pre-plant application were significantly less in terms of grain yield. All three of these comparisons where from when N application was delayed until late March or April. When the delayed applications were compared to 0DAVD yields only two of the 68 comparisons showed a significant decrease on yield. One was the pre-plant application for LCB2017a while the other were the 63DAVD application for LCB2017b. In most locations applications made in March yields were at the highest point, however when delayed till April yield trends on the downward trend. The 2017 crop reached hollow stem (Feekes 6) around Feb 20th while the 2018 crop reached hollow stem around March 10th.

Grain protein concentration was decreased only once when compared to both the pre-plant and 0DAVD treatments. This one timing, LCB2018b 64DAVD, was the only application made in May. During this time the crop was in the early stages of grain-fill. In all locations delaying N application until February/March increased grain protein content above the check, and in most cases above the 0DAVD trt.

Tables 2-3 shows the winter wheat grain yield and protein concentration, respectively, of all treatments. The colors of the cells represent statistical difference from the Pre-plant treatment. Treatments with cells shaded yellow are equal to the pre-plant, Green is statistically greater than while red is statistically less than the pre-plant treatment.

 

2016-2017 Delayed nitrogen winter wheat grain yield and protein results. For the locations of Perkins and N40 the Dec-1 application has a higher yield due to a 2x application of N to equal 180 lbs.

 

2017-2018 Delayed nitrogen winter wheat grain yield and protein results. The Perkins location in 18 was the only location in the study which did not have a statistically significant response to added N.

All the data was combined and plotted by cumulative GDD’s>0 from planting (GDDFP) across all locations to determine a general “best” timing. Using the pre-plant application yield as a base there was no yield loss if the applications was made prior to the 143 GDDFP. When the results were normalized by 0DAVD N there was no yield loss if the applications were made prior to 130 GDDFP. The quadratic model created provides the opportunity to identify the point of highest grain yield, which was approximately 94 GDDFP. In terms of the relationship between the application of N based on GDDFP and % of protein content on the grain, a linear response of N delay application observed for grain protein concentration. Our results suggest that the later the application, the higher the protein % in the grains.

Growing degree days > 0 from planting and equivalent calendar days for all experimental sites (Lake Carl Blackwell, Perkins, Lahoma, Stillwater) utilized in the study evaluating the impact nitrogen fertilizer timing on winter wheat, conducted in north central Oklahoma over the 2016-2017 and 2017-2018 winter wheat growing seasons.

We have concurrent work looking at similar approaches with other sources of N such as Urea and UAN. While all of  these studies are being continued the past two years of work have presented some easy take homes.

First: Timing of N application does matter, but yellow wheat does not necessarily mean yield loss.
Second: Two years in a row ALL Nitrogen could be delayed until hollow stem without yield Loss, in fact yields of trts with N applied at this time typically better than that of the pre-plant.
Third: Protein content increased as N applications was delayed.
Fourth: The conclusions of this and other studies support that N-Rich Strip concept does not increase risk of lost yield.
Fifth: Applying the majority of the N at or just after hollow stem maximized grain yield and protein with a single shot.
Sixth and Final: Be more concerned about applying N in an environment conducive to increased utilization and less about applying at the first sign of N stress. Take a look at the wheat N uptake curve by K-State.The crop really doesnt get going in terms of N-uptake until jointing i.e. hollow Stem.

Wheat N-uptake. Figure adapted from Lollato et al.

Questions for comments fill free to contact me via email at b.arnall@okstate.edu

How Does Soil pH impact Herbicides?

Misha Manuchehri and Brian Arnall

There are many factors that influence the persistence and uptake of a herbicide that has soil activity. One of those factors is soil pH or the amount of hydrogen (H) ions present in the soil solution. Some herbicides will persist for an extended amount of time or rapidly degrade when outside the pH window of 6.0-7.0.

The triazines (atrazine, simazine, etc.) and sulfonylureas (chlorsulfuron, metsulfuron, etc.) are two herbicide chemical families that are especially affected by soil pH (Table 1). The dinitroanilines, and the active ingredient clomazone also can be affected by low and high soil pH; however, degradation by light and/or volatility are more important when it comes to the activity of these herbicides. Generally, the triazines and sulfonylureas persist longer and are more available for plant uptake in higher pH soils (>7.0) while the opposite is true for imidazolinone herbicides (imazamox, imazapic, imazethapyr, etc.). Imidazolinones persist and are more available for plant uptake in lower pH soils (<6.0). The persistence of the triazines and sulfonylureas in high pH soils is a result of a decrease in chemical and microbial breakdown, a trend that is often observed in high pH soils where neutral herbicide molecules are loosely adsorbed to the soil and are more available for plant uptake. Conversely, in low pH soils, triazine and sulfonylurea herbicides become charged and are more tightly adsorbed to the soil where they are more susceptible to breakdown.

A key management factor that must be considered when evaluating a field’s soil pH is whether or not the field is no-till and for how long it has been in no-till. Tillage will impact how deep you should take soil samples to determine soil pH. In no-till and minimum tillage fields, the traditional method of 0-6 inch or 0-8 inch soil cores may not be adequate. Instead, a 0-2 inch core depth and a 2-6 inch core depth may be needed, since application of limestone to the surface may increase surface pH more than expected or application of nitrogen fertilizer to the surface may cause a drop in pH at the surface. In many long term no-till fields with historic surface applications of N and no lime applications, soil pHs in the low 4s have been observed while the 3-6” depth will be at a 6.0. Since herbicides with a soil residual are affecting plants just below the soil surface, this is the soil zone we are the most interested in.

Oklahoma and Kansas production fields can have a wide range of soil pH from field to field and within field. In a dataset of over 300 grid sampled fields from Oklahoma (259 fields) and Kansas (47 fields), the average field pH was a nice 6.0. However, the average range in the lowest and highest soil pH within the fields was 1.9. This means the average field had a pH range from 5.0 to 7.0. It should be noted that more than 25% of the fields had a pH range of 3.0 units. This range of highs and lows has helped explain the presence of spotty herbicide issues on several fields in the past and should be taken into account when planning crop rotations.

It is extremely important to know and understand the pH of your soils and the herbicides you plan to use and how they will react. Soil testing is the only way to know your soil pH and reading your herbicide label is a great way to learn if soil pH affects the herbicide you are applying.

Table 1. Herbicide chemical families or selected herbicides that are most affected by soil pH.

Herbicide chemical family or active ingredient

Common name (trade name) examples

Importance of soil pH

Soil pH considerations

Sulfonylureas

Chlorsolfuron + metsulfuron (Finesse C & F), metsulfuron (Ally XP)

Extremely

pH > 7a – persist longer and are more available for plant uptake

Triazines

Atrazine (AAtrex), simazine (prince)

Extremely

pH > 7 – persist longer and are more available for plant uptake

Imidazolinones

Imazamox (Beyond), imazapic (Plateau), imazethapyr (Pursuit)

Somewhat

pH < 6 – persist longer and are more available for plant uptake

aAcidic Soils < 5.5, Basic Soils > 7.5

 

PELLETIZED LIME – HOW QUICKLY DOES IT REACT

Each year the question comes in about lime source and rate.  To help provide some answers I along with several county educators will be establishing both large scale strip demonstrations and small plot trails on producers fields across Oklahoma.  Data collected from these project over the next four to six years will provide a great basis for future recommendations. But until we have more data I would like to share this article written by Dr. Lloyd Murdock. Dr. Murdock does a fantastic job describing the impact of source and rate on soil pH. Below Dr. Murdock contact is a list of relevant fact sheets and publications produced by Oklahoma State University.

Article written by: Lloyd W. Murdock, Retired Extension Soils Specialist 

Pelletized lime is made by granulating finely ground agricultural (ag) lime. It may be dolomitic or calcitic depending on the nature of the original limestone. The fine lime particles are bonded together with lignosulfonates during the pelletizing process. In general, the pelletized lime contains about 9% lignosulfonates. Pelletized limestone is a product that has been on the market for many years. The price of the material on a per ton basis is considerably higher than bulk ag lime, so its use has mainly been confined to specialty markets, with little use in production agriculture. However, the product is becoming more commonly used in production agriculture. Some questions have been raised about recommended rates of this material and the speed at which it reacts compared to standard ag lime.

How Much Can the Rates be Reduced for Pelletized Lime?

The recommended rates and the effect on soil pH of any agriculture lime product is related to the neutralizing value of the lime, which is a combination of the purity (calcium carbonate equivalent) and the fineness of grind (particle size). As these two properties of lime change, so does the recommended rate of lime and its effect on soil pH. The finer the lime particles and the higher the calcium carbonate equivalent, the more effective the lime and the lower the rate of lime needed to make the desired pH change.

Bulk ag lime sold in Kentucky has an average neutralizing value of 67% when averaged for all quarries. All lime recommendations in Kentucky are based on this value. Therefore, if the neutralizing value of pelletized lime is substantially higher than 67%, then the recommendation should be lower. The information to calculate the neutralizing value should be on the pelletized lime bag, and the method to calculate the neutralizing value can be found in publication AGR-106,University of Kentucky College of Agriculture. For example, a high quality pelletized lime source may have a neutralizing value of 85. If this is the case, the lime rate can be reduced to 78% of what would be recommended for bulk ag lime. This is calculated by dividing the average neutralizing value of ag lime by the neutralizing value of the pelletized lime being used (67 ”85= 0.78). In this case, 1560 lbs/ac of pelletized would be required to equal one ton of ag lime. If less than this amount of pelletized lime is used, the expected soil pH change will probably not be obtained. As can be seen from this example, the recommended rates of pelletized lime cannot be greatly reduced as compared to bulk ag lime.

How Fast Will Pelletized Lime React?

The speed of reaction (rate at which the lime will change the soil pH) is mainly a function of surface area of the lime particles and their contact with the soil. The finer the grind of lime, the more the surface area, and the faster the reaction. Since pelletized lime is pelleted from finely ground lime, it is easy to assume that it will be faster reacting than bulk spread ag lime which has some larger, non-reactive particles as a part of its composition. However, this is not true. Based on research from several states, it appears that the pelletized lime reacts no faster to raise the soil pH than good quality ag lime applied at recommended rates. In fact, incubation studies at Michigan State University found the pelletized lime to have a slower rate of reaction. Field research from other states indicate the rate of reaction is about equal to ag lime.

The slower than expected reaction of pelletized lime is probably due to two things: 1) the lignosulfonate binding, and 2) the distribution pattern. The lignosulfonate binding must break down by solubilization or microbial action before the lime is released to neutralize the soil acidity, which would delay the speed of reaction. When the pelletized lime is spread, it is distributed on the soil in pellets and results in small concentrated zones (spots) of lime after the binder dissolves. The fine, reactive particles of ag lime, in contrast, are spread as more of a dust so that the lime is better distributed and not in concentrated spots. The bulk spreading method will allow the ag lime to contact a larger amount of the soil.

Summary

Pelletized lime is an excellent source of high quality lime. Its use in agriculture has been limited due to the price. The recommended rate of pelletized lime should be based on the neutralizing value of the lime and will probably be about 75 to 80% of that for average-quality bulk ag lime. Contrary to popular belief, the speed of reaction of pelletized lime is no faster than that of bulk ag lime. Thus, when comparing the two materials, less pelletized lime is needed to raise the soil pH to the desired level, but the increase in pH is no faster than with ag lime if both are applied on the basis of their neutralizing values.

 

Lloyd Murdock
Professor Emeritus

lmurdock@uky.edu
Phone (859) 257-9503 x207
Fax (270) 365-2667

Princeton Research & Education Center
1205 Hopkinsville St.,
Princeton, KY 42445-0469

 

OkState FactSheets.

PSS-2225 Soil Test Interpretations

PSS-2239 Causes and Effects of Soil Acidity

PSS-2240 Managing Acid Soils for Wheat Production

PT 2000-10 Liming Raises Soil pH and Increases Winter Wheat Forage Yields

PT 2002-15 The Risk of Not Liming

PT 2003-8   Lime Acid Soils: What You Should and Should not Expect

 

Nitrogen Management Report Card

During January and February I spent a lot of time on the road giving precision ag and wheat yield / protein talks. One thing about giving the same talk multiple times and spending countless hours on the road, about 70, is the time you have to think about the little things in your talk. This time around it was the slide below. The graph is from the 502 Long Term Fertility study located in Lahoma OK. When I first put the slide together in 2016 the purpose was to show how the yield and optimum fertilizer rate is extremely varied. I went in to the 55 plus years of yield data and pulled out the past ten years and identified the nitrogen treatment, only those with full P and K fertility, that economically maximized yield each year. With the graph I was able to show how the nitrogen rate required to maximize yield changes dramatically each year and where the amount of N was not directly correlated with yield. But after showing this graph a few times I thought that added lbs of N per bushel would help me highlight the point about changing N demand. That’s the blue numbers below each year. And of course out of curiosity I averaged the numbers. The ten year average was 1.5 lbs of N, which would suggest over a ten year period you would need to apply 120% of the N removed to optimize profit.

Yield and Nitrogen Rate

Selected data from the long term winter wheat study locate in Lahoma, Oklahoma. Study consist of a range of nitrogen, phosphorus, and potassium rates and combinations. The orange bar the grain yield of the plot with the economic optimum yield and the black bar is the N rate associated with the yield. The blue values on the bottom is the lbs of N required per bushel.

 

The 1.5 lbs per bushel over time was an important number. Not long before I had reached out to half of dozen producers that I have spent at least 5 years with working on their N management. My question to them, what was your average yield and average N rate over all your fields and years. Turns out that most of these producers who were using N-Rich strips and making 2 or 3 trips over the field were averaging 1.5-1.6 lbs N per bushel of wheat produced across a farm. Of course when they told me this I was excited, that’s such an improvement over 2.0 lbs of N per bushel.

The real thought came with me combining these two independent tid bits. Can we provide a Nitrogen Management Report Card  if we look at several years of yield history? Let me preface what is presented below is not a scientifically tested or proved concept, yet. The more I think about it the more I am beginning to think that YES we can do a beneficial postmortem analysis. This is not a 1 year analysis, in fact based on the long term data I have been looking at there needs to be 5 years of data per field evaluated.  I also strongly contend that this is a by field process. This will provide the opportunity to look at management over a broad spectrum of soil types and weather.

The calculation for lbs of N per bushel is not tough. In a continuous grain only winter wheat system you would add up the amount of nitrogen applied per acre over the period you are evaluating. Sum up the annual average grain yield and multiple that value by 1.3.  Divide the total N applied by the total N removed per acre.  This will be a decimal value, to compare with the tables below multiple by 100 to get a percent.  Based on the long-term trials there needs to be at minimum five years of data.  But the more the better.

Pounds of nitrogen removed per one unit of yield harvested. These values are generalized averages and can change based on environment, management, and cultivar.

 

I would like to reiterate the grades provided below were not developed from any given data set. The report comments are of my own opinion. I do hope in the near future to utilize the Oklahoma State University long-term fertility studies to refine these tables.

Wheat only 2

The Nitrogen Management Report Card for a continuous winter wheat grain only system. The first column is lbs of N per bushel, the second column is the percent of nitrogen applied per pound removed. The last column is the report on your nitrogen management strategy.

For a field with a crop rotation the way to calculate is the same you will just need to go into each harvest and multiple yield by the N in the crop, then sum up those values.

Crop Rotation, no-legume 2

The Nitrogen Management Report Card for a Crop Rotation that does not include a legume. The first column is the percent of nitrogen applied per pound removed. The last column is the report on your nitrogen management strategy.

For a field with a crop rotation with legume (or cover crop), I have adjusted the grade scale with the assumption less total N will be needed due to the addition of N fixed by the legumes.

Rotation with Legume 2

The Nitrogen Management Report Card for a Crop Rotation including a Legume.  Legume nitrogen removal is not accounted for however grades are changed assuming some level of nitrogen fixation. The first column is the percent of nitrogen applied per pound removed. The last column is the report on your nitrogen management strategy.

Hopefully with concept will give you a different way to evaluate your N management strategies.  This will not and cannot tell you what you need to apply next year. I mean just look at the data from Lahoma, from 2011 to 2015 optimum N rate ranged from 0 to 100 lbs N pre acre and N per bushel grown ranged from 0 to 2.2. Also as you look at the charts, understand that if you follow the old rule of thumbs 2.0 lbs N per bushel winter wheat and 1.2 lbs N per bushel for corn and sorghum, you are likely in the RED. These values are not that wrong for yield goal, 100% preplant application nitrogen management strategy. It is just with today technology, equipment, and agronomic practices we can do a lot better.

My final recommendations/comments would be:

1) If you are in the greens and yellows you are overall doing well. However there is always room for improvement. Are you currently accounting for the temporal variability in N demand, how about the spatial variability?

2) If you are in the orange and reds on the low side, are you there because you are underestimating yield or you are applying less because of grain prices?
There is likely money to be made by increasing yields with a little more nitrogen in these fields.

3) If you are in the orange and reds on the high side, are you there because you are consistently overestimating yield? Perhaps your yield estimation is not off but your lbs of N per bushel value is too high? Are you applying all of your N pre-plant. This practice is the most inefficient way, in terms of N use efficiency, to fertilize.

Questions or comments?

Please feel free to reach out to me via email or phone.
b.arnall@okstate.edu 405-744-1722