Home » Posts tagged 'Kansas'

Tag Archives: Kansas

ABOUT ME

osunpk

osunpk

Since 2008 I have served as the Precision Nutrient Management Extension Specialist for Oklahoma State University. I work in Wheat, Corn, Sorghum, Cotton, Soybean, Canola, Sweet Sorghum, Sesame, Pasture/Hay. My work focuses on providing information and tools to producers that will lead to improved nutrient management practices and increased profitability of Oklahoma production agriculture

View Full Profile →

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 4,187 other subscribers

In-Furrow Placement of Urea Products with Wheat Seed

Its that time of year I always get the question of “How much urea can I put in the furrow?”. My answer is always two fold first, I wouldn’t recommend it, its a risky venture. Even though I know some do it. Second, my research shows very little is any value from N in furrow. I like P but N just doesn’t show me any return. So for me the process is high risk, with little or no potential for return. But with blog I turn to our purple friend up north to share what their research has sown.

Brian

Guest Authors Kansas State University
Lucas Haag, Agronomist-in-Charge, Southwest Research-Extension Center, Tribune lhaag@ksu.edu
Alan Schlegel, retired
Dorivar Ruiz Diaz, Nutrient Management Specialist ruizdiaz@ksu.edu

To save time and cost, some wheat producers may be thinking about adding a little extra nitrogen (N) as urea or UAN to their phosphorus fertilizer through the drill with the seed. This would either be in addition to, or instead of, any preplant N applications.

While a minimum preplant N application of 20 to 40 lbs N per acre is often desirable, especially in no­ till production systems, there are risk involved when placing urea containing fertilizers in direct seed contact. Traditionally, we have suggested that no urea or UAN solution be placed in contact with the seed. With the continued adoption of air-seeders a common question we receive from producers is can urea, or enhanced urea products be placed in-furrow.

Methods of early-season nitrogen applications

If the starter fertilizer can’t be “spiked” with urea to add extra N, how can the necessary 20 to 40 pounds of N be applied? Subsurface banding (knifing) of N as either anhydrous ammonia, liquid UAN, or dry product will result in the greatest N use efficiency by the wheat crop. This is especially true for no-till wheat production.

If knifed N applications are not used, the next best application method would be surface banding (dribbling) of UAN solution in streams on 15- to 18-inch centers. Broadcasting urea, ammonium nitrate, or UAN applications are not generally as efficient as subsurface banding, but they are often the best choice due to equipment, logistics, or weed management considerations. Broadcast applications of N will have the most consistent performance if followed by light incorporation, precipitation, or irrigation.

Direct seed placement of nitrogen

When placing starter fertilizer in direct contact with wheat seed, producers should use the following guidelines:

The problem with placing urea-containing fertilizer with the seed is that urea is initially converted to ammonia and may be toxic to plant roots if the wheat seed is placed in direct contact with the fertilizer. Producers may hear of someone who has placed urea in direct seed contact and seemed to have no problems, but there are also many cases where urea-containing N fertilizers has injured the developing seedling and reduced or delayed emergence significantly. The risk of injury is greater in drier soils, at higher soil pH levels, and at higher N rates. High soil pH favors a higher concentration of ammonia as compared to ammonium as urea hydrolyzes. There is significant risk associated with placing urea-containing fertilizers in direct seed contact.

The chart below shows how soil texture affected the level of wheat germination when urea-N was applied with the seed in a K-State greenhouse study. The wheat was well watered in this study, but urea-N placed with the seed still reduced germination, especially in the sandy soil. The readings shown below were taken after 10 days. With the high rates of urea used in this study, it is possible that more damage to the seedlings would occur with time as the urea continues to hydrolyze into ammonia.

Field studies have also shown reduced wheat stands due to in-furrow placement of urea. Across 5 site­ years in western Kansas the placement of urea in-furrow has resulted in decreased stands at spring greenup compared to the control (Figure 2).

The stand reduction becomes especially noticeable at higher rate of N. One of the challenges of understanding the risk of seedling injury is that the magnitude of injury varies by field conditions an years. In some years very little reduction may be evident, even at higher rates of N, while in other years, stand reductions (and their associated impact on yield) is very evident. As an example at Tribune in 2017, reduction in stand caused by urea placement with seed, and their effect on yield were quite evident (Figures 3 and 4).

Stands were reduced 32 and 63% compared to the control when 30 and 60 lbs of N as urea were applied in-furrow (Figure 3). This resuled in yield reductions of 14 and 40%, respectively (Figure 4).

If you’d like to apply extra N directly in the seed furrow, one option is to use a controlled-release form of N, such as ESN. As shown in figure 4, at N application rates of 30 lbs/ac and less, where ESN-N was applied in-furrow, wheat yields were essentially the same as where the N was applied pre-plant, and higher compared to the same amount of N applied as urea. At the highest rate of application in the study, 60 lbs/ac, even ESN resulted in stand and grain yield reductions.

Also, air seeders that place the starter fertilizer and seed in a band an inch or two wide, or side band the fertilizer relative to the seed, provide some margin of safety because the concentration of the fertilizer and seed is lower in these diffuse bands. In this scenario, adding a little extra urea containing N fertilizers to the starter less likely to injure the seed – but it is still a risk.

Here is a great video by Dr. Haag.

Using the GreenSeeker after Freeze Damage

After discussions with producers in southern Kansas I felt the need to bring back this past blog.  It seems that much of (not all) the early planted wheat lost a significant amount of biomass during the winter and the N-Rich Strip GreenSeeker approach is producing what looks to be low yield potentials and N-Rate recommendations.  This should be treated much like we do grazed wheat and the planting date should be adjusted, see below.  It is also important to note that in the past year a new wheat calculator was added to the NUE Site.  http://nue.okstate.edu/SBNRC/mesonet.php. Number 1 is the original OSU SBNRC but the #2 is calculator produced by a KSU/OSU cooperative project.  This is the SBNRC I recommend for use in Kansas and much of the norther tier of counties in OK.

Original Blog on Freeze Damage and the GreenSeeker.

Dr. Jeff Edwards “OSUWheat” wrote about winter wheat freeze injury in a receive blog on World of Wheat, http://osuwheat.com/2013/12/19/freeze-injury/.  As Dr. Edwards notes injury at this stage rarely impact yield, therefore the fertility requirements of the crop has not significantly changed.  What will be impacted is how the N-Rich Strip and GreenSeeker™ sensor will be used.  This not suggesting abandoning the technology in fact time has shown it can be just as accurate after tissue damage.   It should be noted GreenSeeker™ NDVI readings should not be collected on a field that has recently been damaged.

A producer using the N-Rich Strip, GreenSeeker™, Sensor Based N-Rate Calculator approach on a field with freeze damage will need to consider a few points.  First there need to be a recovery period after significant tissue damage; this may be one to two weeks of good growth.   Sense areas that have had the same degree of damage as elevation and landscape position often impacts the level of damage.  It would be misleading to sense a area in the N-Rich strip that was not significantly damaged but an area in the Farmer Practice that took a great deal of tissue loss.

Finally we must consider how the SBNRC, available online at http://nue.okstate.edu/SBNRC/mesonet.php, works.  The calculator uses NDVI to estimate wheat biomass, which is directly related to grain yield.  This predicted grain yield is then used to calculate nitrogen (N) rate.  So if biomass is reduced, yield potential is reduced and N rate reduced.  The same issue is seen in dual purpose whet production.  So the approach that I recommend for the dual purpose guys is the same that I will recommend for those who experienced significant freeze damage.  This should not be used for wheat with just minimal tip burn.

To account for the loss of biomass, but not yield, planting date needs to be adjusted to “trick” the calculator into thinking the crop is younger and has greater potential.   Planting date should be move forward 7 or 14 days dependent  For example the first screen shot shows what the SBNRC would recommend using the real planting date.  In this case the potential yield is significantly underestimated.

The second and third screen shots show the impact of moving the planting date forward by 7 and 14 days respectively.  Note the increase in yield potential, which is the agronomically correct potential for field considering soil and plant condition, and increase in recommended N-rate recommendation.  Adjust the planting date, within the 7 to 14 day window, so that the yield potential YPN is at a level suitable to the field the yield condition and environment.  The number of days adjusted is related to the size and amount of loss.  The larger the wheat and or greater the biomass loss the further forward the planting date should be moved.  In the example below YPN goes from 37 bu ac on the true planting date to 45 bu ac with a 14 day correction.  The N-rate changes from 31 lbs to 38 lbs, this change may not be as much as you might expect.  That is because YP0, yield without additional N, also increases from 26 to 32 bushel.

freeze Zero day moveImage 1. Planting date 9/1/2013.  YPN 37 bu ac-1 and N-Rec 31 lbs ac-1.

Freeze 7 day moveImage 2. Planting date 9/8/2013.  YPN 40 bu ac-1 and N-Rec 34 lbs ac-1.

Freeze 14 day moveImage 3. Planting date 9/15/2013.  YPN 45 bu ac-1 and N-Rec 38 lbs ac-1.

This adjustment is only to be made when tissue has been lost or removed, not when you disagree with the yield potential.  If you have any questions about N-Rich Strips, the GreenSeeker™, or the online SBNRC please feel free to contact me at b.arnall@okstate.edu or 405.744.1722.