Home » Posts tagged 'Fertilizer'

Tag Archives: Fertilizer

ABOUT ME

osunpk

osunpk

Since 2008 I have served as the Precision Nutrient Management Extension Specialist for Oklahoma State University. I work in Wheat, Corn, Sorghum, Cotton, Soybean, Canola, Sweet Sorghum, Sesame, Pasture/Hay. My work focuses on providing information and tools to producers that will lead to improved nutrient management practices and increased profitability of Oklahoma production agriculture

View Full Profile →

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 3,696 other followers

DAP in short supply? Revisiting, DAP vs MAP, Source may matter!

From mid August through October, fertilizer applicators and grain drills are running across the southern great plains wheat ground. Di-ammonium Phosphate (DAP 18-46-0) is maybe the most popular form of phosphorous (P) utilized in wheat production today. DAP delivers a high content of nitrogen (N) while efficiently binding the toxic aluminum (Al) ions low pH soils. However due to the flooding that occurred throughout the spring the Ports have been closed and DAP could be in short supply. I have heard that many companies and Co-ops have already sourced Mono-ammonium phosphate (MAP 11-52-0) to supplement the lack of DAP for our early planted wheat crop. With this happening, I wanted to share some points about the two sources. In a broadcast incorporated scenario I do not have much preference for one over the other. It is when producers are applying the fertilizer in-furrow or applying to alleviate Al toxicity that source can matter. As described in the post below, in a soil with a neutral pH DAP and MAP perform equally well. So in this scenario I give MAP a slight edge over DAP if the price is the same. I say this as you can run less material per acre with MAP and refill a little less often. Many worry about the drop in N delivered with MAP versus DAP but in my work I see that is the P in the starter that gives us a good response and not the N, which can be delivered with pre-plant or top-dress. However, DAP wins out in soils with a pH below 5.5. The original blog below shows the results when DAP and MAP are banded in acidic soils using the same rate of P per acre.  The reason we see this happen is that when MAP dissolves it forms a slightly acidic solution (approx 4.0) while DAP will dissolve to form a slightly basic solution (approx 7.5). In our work BOTH DAP and MAP increased yield above the check in acidic soils, which goes to show MAP is an affect tool for short term remediation of aluminium toxicity (Band P for Al toxicity Blog). However it might require more MAP per acre to reach the equivalent results. Because of what we saw when comparing the two sources at equivalent rates of P, I would recommend increasing the rate of P2O5 from 30 lbs per acre to 35 or 40. This would be going from 65 lbs of DAP to 67-77 lbs of MAP per acre.

So the take home would be as this wheat season takes off and you find that DAP is hard to locate and you A) Have overall neutral (5.5+) pH levels do not hesitate using MAP. Run the normal amount of material getting a few extra lbs of P or apply less material to get the same amount of phosphate. B) Have a acidic situation and are banding to alleviate aluminum toxicity use the same amount of material or a little bit more.  Keep in mind in acidic soils with a low soil test P level you have to apply enough phosphate to take care of the Al and enough to take care of the P deficiency. Note the results of the NPKS wheat response strip (NPKS BLOG)

Original Post Published July 18, 2016
DAP vs MAP, Source may matter!

Historically the two primary sources of phosphorus have had different homes in Oklahoma. In general terms MAP (11-52-0) sales was focused in Panhandle and  south west, while DAP (18-46-0) dominated the central plains.  Now I see the availability of MAP is increasing in central Oklahoma. For many this is great, with MAP more P can be applied with less material. which can over all reduce the cost per acre. There is a significant amount of good research that documents that source of phosphorus seldom matters. However this said, there is a fairly large subset of the area that needs to watch what they buy and where they apply it.

If you are operating under optimum soil conditions the research shows time and time again source does not matter especially for a starter.  In a recent study just completed by OSU multiple sources (dry, liquid, ortho, poly ect ect) of P were evaluated.  Regardless of source there was no significant difference in yield.  With the exception of the low pH site. The reason DAP was so predominate in central Ok, soil acidity.  See an older blog on Banding P in acidic soils.

Picture1

Figure 1. The cover of an extension brochure distributed in Oklahoma during the 1980s.

When DAP is applied, the soil solution pH surrounding the granule will be alkaline with a pH of 7.8-8.2. This is a two fold win on soil acidity aka aluminum (Al) toxicity.  The increase in pH around the prill reduces Al content and extends the life of P, and as the pH comes back down the P ties up Al and allows the plant to keep going. However, the initial pH around the MAP granule ranges from an acid pH of 3.5-4.2.  There is short term  pH change in the opposite direction of DAP, however the the Al right around the prill becomes more available and in theory ties up P even faster.

Below is a table showing the yield, relative to untreated check, of in-furrow DAP and MAP treatments in winter wheat.  The N401 location had a ph 6.1  while Perk (green) has a pH of 4.8.  At Perkins in the low pH, both forms of P significantly increased yield, almost 20 bushel on the average.  DAP however was 5 bushel per acre better than MAP. At the N40 site the yield difference between the two sources was 1 bushel.

MAPvDAP2

Relative yield winter wheat grain yield MAP and DAP both applied at equal rates of P (32 lbs P2O5 ac) when compared to a untreated check.

In general it can be said that in acid soils DAP will out preform MAP while in calcareous high pH soils MAP can out preform DAP. So regarding the earlier statement about the traditional sales area of MAP or DAP if you look at the soil pH of samples went into the Oklahoma State University Soil, Water, and Forage Analytical lab the distribution makes since.

State pH

Average soil pH of samples sent into OSU soil water forage analytical lab by county.

In the end game price point and accessibility drives the system.  In soils with adequate soil pH levels, from about 5.7 to around 7.0, get the source which is cheapest per lbs of nutrient delivered and easiest to work with. But if you are banding phosphorus in row with your wheat crop because you have soil acidity, DAP should be your primary source.

Double Crop Response to Additional N, P, K and S.

Vaughn Reed, PhD. Student Precision Nutrient Management
Brain Arnall Precision Nutrient Management Extension Specialist.

Data presented below are the results of Mr. Reeds Masters research project.

On farm research trials are important, because they give us the ability to see responses over a larger geographic area, and even more importantly, evaluate our recommendations on fields that are managed by producers, not researchers.  They also allow us to look at current production practices and see if there are any missed opportunities. Several years ago, we looked at whether producers were leaving yield on the table by not applying enough nitrogen (N), phosphorus (P), potassium(K), and sulfur (S) to winter wheat. We did this by applying strips of N, P, K, and S fertilizer on farmers’ fields with the instructions to not change their fertilizer management strategies. If one or more of the strips resulted in higher yields then it could be assumed that either the nutrient was under-applied by the producer, or in the case of N, lost.  That study concluded that at 75% of the locations, yield was maximized by the producer with [their respective] NPKS management system, however the greatest responses came from the addition of P and that Oklahoma State University’s soil testing and analysis was adequate for nutrient recommendations. That studies results were published in 2017 and is open access, so available for anyone to read. https://dl.sciencesocieties.org/publications/cftm/abstracts/3/1/cftm2017.02.0014

Locations of double crop fertility response strips applied in the summers of 2016 and 2017.

There are many producers around the state that follow winter wheat with double crops (DC). Often, this practice is done with limited inputs to reduce economic risk.  Oklahoma State does not make different recommendations for DC or full season crops, with the exception that yield potentials can differ.  In 2016 and 2017 we duplicated the Wheat NPKS study across 3 double crops (soybean, grain sorghum, sunflower) following winter wheat and canola. With a recent climb in DC yields we wanted to investigate if producers were applying enough nutrients to maximize grain yield. Additionally it would allow us evaluate the accuracy of OSU’s soil test based fertilizer recommendations in a double crop. Over the two years, 61 on-farm sites ranging from central to NE Oklahoma had 200 lb/ac of product per nutrient applied in strips 6ft wide by 150 ft long.  Urea (46-0-0), triple super phosphate (0-46-0), muriate of potash (0-0-60), and gypsum (0-0-0-19) were used for sources N, P, K, and S, respectively (92 lbs N, 92 lbs P, 120 lbs K, 38 lbs S). In most cases the fertilizer was applied post planting and post-emergence to ensure strips were applied an areas with good stand.

NPKS Strip Applicator. This ground driven 3pt rig uses Gandy boxes to deliver fertilizer into tubes which is then blown, by a PTO driven fan, out into strips 6 feet wide, per box. This applicator was putting out 200 lbs of Urea, 0-46-0, potash, and gypsum out per acre.

Much like with the wheat-NPKS study 75% of the locations did not respond to additional fertilizer. Twenty treatment comparisons of the 244 made across all 61 locations (50 soybean, 7 grain sorghum, 4 sunflower) yielded a statistically significant change in yield due to the addition of N-P-K-or S. For this report, a comparison was the yield of each nutrient versus the non-treated check, therefore there were four comparisons made per location. Seventeen of the twenty positive responses were found in soybean, three with grain sorghum, and no responses were found in sunflower plots.  Lack of response from grain sorghum and sunflower locations is contributed to small amount of grain sorghum and sunflower fields in the study.

Double crop soybeans in Ottawa County with strips of nitrogen, phosphorus, potassium, and sulfur applied post plant.

Nitrogen rates, for non-legumous crops, are yield driven, meaning the higher yielding a crop, the higher amount of N required.  Both grain sorghum and sunflower crops, due to neither being legumes, were expected to see N response, especially to those locations that applied little to no N to begin with.  A yield response from the addition of N was found in one grain sorghum location, where the producer application was not enough to maximize yield, and the additional N pushed the yields.  As expected, there were no soybean locations that responded to the addition of N.

Phosphorus and potassium are both sufficiency based, not yield driven.  This means that if the soil is at 100% sufficiency, the crop will produce at its highest rate achievable, based on that nutrient.  100% sufficiency for P and K are approximately 65 STP and 250 STK, respectively.  Phosphorus and potassium strips yielded the most results, especially in soybean locations. Of 20 responses, five responses were due to P, ten due to K, and four due to S. Locations that responded to the addition to P were locations that either had low levels of STP (approx. 80% sufficiency or less), or had low pH, which leads to less availability of P (pH>5.0).

Potassium yielded the most positive results, with ten responsive locations, as well as the most interesting results, with only three sites falling below 100% sufficiency.  The other responses were attributed to having low Cl levels (Cl, as in Chloride, which while responses are rare, is a necessary nutrient, and sometimes can lead to losses in yield, especially in sandy environments), as well as drought stress conditions.  Potassium has been shown to have a vital role in nutrient uptake and water retention, as it is found to be critical for root growth, and these are displayed highest in crops found in drought like conditions. One hypothesis for the K response is related to root growth. The later planted DC will spend less resources in root development before going reproductive. Soybean is a heavy user of K, combine smaller roots, typically hot drier soils, and high K demand it is not surprising to find this occurrence.

Sulfur, while not wide-spread reported in Oklahoma, has recommendations by OSU built on a yield driven scale.  There were four responsive locations found in this project. While one location had low soil test S values there were located areas that received high rainfall events during the growing season, and therefore the response was attributed to leaching of S.

So, after all that, what is the bottom line?  Here is our observations:

  • Producers maximized yield 75% of the time, with 25% of locations responding to any additional nutrient.
  • The 20 responses to additional nutrients occurred across 15 locations, four locations had responses to more than one nutrient
  • By nutrient: Note for P and K, due to site variability it was not expected to observe statistic yield increase due to P or K unless soil test was below 70% sufficiency, of which no location had soil test P or K below 70%.
    • 38 locations were below 100% sufficiency of phosphorus, with five observed responses
    • Seven locations were below 100% sufficiency of potassium, two observed responses. An additional eight locations responded that were not predicted by soil test
    • Based on pre-plant soil test there were no sites expected to respond to the addition of Sulfur, 4 locations did respond.
  • Soil test results were adequate in correctly identifying locations that would not respond to the addition of nutrients (93.5% accurate), while not as accurate at predicting sites that would respond.
  • For K, soil testing was less accurate, as eight of the ten responsive locations had soil test values above 250 soil test K (125 ppm or 100% sufficiency). For this reason, we are currently doing work evaluating K recommendations for soybeans.

This work confirms that of the fields we evaluated, the majority was not yield limited by N, P, K or S. However, as with anything, we have more work to do in order to further refine our recommendations, and always looking to learn more about how to aid producers.

Rain makes grain, but also washes Nitrogen away.

Precipitation in the southern Great Plains is never something you take for granted. As I write this blog I am just wondering when it will be dry enough for long enough to finishing sowing my wheat, but I also remember just how dry it was last winter. The last three months, Aug-Oct rank as one of wettest in the states recorded history. Below are the 30, 60, and 90 day rain fall totals (as of 10.26.18) from Mesonet. By the 60 day map most the wheat belt is showing double digits and the 90 day maps shows a lot of our graze out wheat regions in the 20+ inch realm.

30 Day rainfall totals retrieved from Mesonet on 10.26.18.  Putting recording window from Sept 26-Oct 26. http://www.mesonet.org/index.php/weather/category/rainfall

60 Day rainfall totals retrieved from Mesonet on 10.26.18.  Putting recording window from Aug 27 – Oct 2 http://www.mesonet.org/index.php/weather/category/rainfall

90 Day rainfall totals retrieved from Mesonet on 10.26.18. Putting recording window from July 28-Oct 26 http://www.mesonet.org/index.php/weather/category/rainfall

I bring up graze-out wheat for a reason, to get as much forage as possible it is planted as early as possible. I know of fields that were seeded in July and early August. And to produce this great quality forage, nitrogen fertilizer is applied pre-plant. It just so happens that this July more fertilizer was sold than any other month since I have been in Extension. In July producers bought nearly 1/3 of totoal tons of fertilizer what is typically sold in a single year. While a portion of this may have been pre-purchased for later delivery, I know a lot of it made it to the field. To see why this matters, lets take a look at the nitrogen cycle.

 

The nitrogen cycle is made up of a central component (Organic Matter), three N sinks (Microbial/Plant, Atmosphere, Nitrate {NO3}), four loss pathway (Ammonia Volatilization, Leaching, Plant Loss, Denitrification), and five additions (N2 Fixation, Fertilization, Lightning/Rainfall, Industrial Fixation, Plant/Animal Residues). We are going to spend the next bit talking about what is happening in the bottom right corner and left hand side.

When we put anhydrous ammonia (NH3) in the soil it pulls a hydrogen (H) from water and turns in to ammonium (NH4). Urea goes through a similar process but has to first be converted to NH3 by the enzyme urease.  Ammonium is important because it is a positively charged ion (cation) which will be fixed on the cation exchange sites. This means is it not going to move around in soil, but is readily available for plant uptake. However when NH4 is in a soil with temperatures above 50 degrees and in the presence of oxygen the two bacteria nitrosomonas and nitrobacter convert it to NO3. Given warm soils and our good soil moisture levels it very likely that any N applied in July or August would have converted 50% or more of its NH4 into the NO3 form by this point.

Nitrification portion of the Nitrogen Cycle. Complete Nitrogen Cycle. http://psssoil4234.okstate.edu/lecture

Nitrate is a negatively charged ion (anion) which is repelled from the negatively charged soil. This is beneficial for plants as when they take up water, NO3 is taken up though mass flow. The downside is that since NO3 is in the soil solution, where ever the solution goes so does the NO3, that is called leaching. So in well drained soils the recent rains will have caused a fair amount of leaching.  For some areas the NO3 that is leached below the root zone and could potentially be drawn back up as the soils dry. But there are going to more scenarios in which the N is gone, or at least gone elsewhere. In a sloping field the soil water will hit a limiting layer or clay increase layer and move down slope. I have already seen many wheat fields that are showing yellowing on side slopes.

Unfortunately leaching isn’t the only way we are losing N during this wet cycle. Denitrification occurs when the soil is saturated and oxygen (O) levels are depleted.  In anaerobic conditions, microbes strip O from NO3 reducing it gaseous forms. Typically it takes about one week of standing water to start seeing high levels of denitrification.

Nitrate loss pathways of the Nitrogen Cycle.
Complete Nitrogen Cycle. http://psssoil4234.okstate.edu/lecture

What does this all mean? Conservative guess is that for July or early August applied N we could be looking at losses of 50% or more.  This is a rough guesstimate of course, a fields soil texture, slope, soil type, tillage etc will all impact the loss amount.  As the date of application moves closer to Oct there will have been less nitrification and less total rainfall. What I can say with 100% certainty is that if N fertilizer was applied any time from July through early September, N has been lost.

So whats my N manage recommendations? First, foremost, and always This is the perfect scenario where N-Rich Strips will pay off! (Here’s a blog on N-Rich Strips https://osunpk.com/2013/09/19/nitrogen-rich-strips/). The N-rich Strip will allow you to detect N stress early, which for grazers is important. Close attention needs to be paid on fields with wheat being grown for grazing, N deficiencies will reduce forage production and gain. If the N-Rich strip shows up or there are signs of N deficiencies (yellowing of older leaves from the tip toward the collar) its time to be looking at applying N. For grain only fields we have some time. It is important though that as we get closer to spring and hollow stem we are taking care of the crops N needs. Here is a link to a blog on reading the N-Rich Strips to get a N rate rec https://osunpk.com/2014/02/24/sensing-the-n-rich-strip-and-using-the-sbnrc/ and here is a link to one of my latest blogs on Timing of Nitrogen Application for Wheat https://osunpk.com/2018/10/01/how-long-can-wheat-wait-for-nitrogen/.

For more information please contact me at b.arnall@okstate.edu

 

Below is a Sunup TV video on the subject of Nitrogen Losses with the recent rains.

 

 

 

Now may not be the time for Replacement

For phosphorus (P) and potassium (K) fertilizer management there are three primary schools of thought when it comes to rate recommendations. The three approaches are Build-up, Maintenance/Replacement, and Sufficiency. There is a time and place for each one of the methods however the current markets are making the decision for the 2016-16 winter wheat crop a very easy one. The OSU factsheet PSS-2266 goes in-depth on each of these methods. For the rest of the blog I will use P in the conversation but in many scenarios K should/could be treated the same.

Build-up is when soil test is below a significant amount of fertilizer, about 7.5 lbs P2O5 per 1 ppm increase, is added so that soil test values increase.  This method is only suggested when grain price is high and fertilizer is relatively cheap.  Given the market, this is a no go.  The two most commonly used methods of recommendation are Replacement and Sufficiency. In the replacement approach if the soil is at or below optimum P2O5 rate it based upon replacing what the crop will remove. The sufficiency approach uses response curves to determine the rate of P that will maximize yield. These two values are typically quite different.  A good way you boil the two down is that replacement feeds the soil and sufficiency feeds the plant.

Oklahoma State Universities Soil, Water, and Forage Analytical Lab (SWFAL) provides recommendations utilizing sufficiency only while many private labs and consultants use replacement or a blended approach.  Some of this is due to region.  Throughout the corn belt many lease agreement contain clauses that the soil test values should not decrease otherwise the renter pays for replacement after the lease is over. For the corn belt both corn and soybean can be expected to remove 80 to 100 pounds of P per year.  Conversely the Oklahoma state average wheat crop removes 17 lbs P a year.  In areas where wheat yields are below 40 bushel per acre (bpa) using the sufficiency approach for P recs can increase soil test P over time.

This conceptual soil test response curve is divided into categories that correspond with below opti-mum, optimum and above optimum soil test values. The critical level is the soil test level, below which a crop response to a nutrient application may be expected, and above which no crop response is expected. At very high soil test levels crop yield may decrease. *Rutgers Cooperative Extension Service FS719

This conceptual soil test response curve is divided into categories that correspond with below opti-mum, optimum and above optimum soil test values. The critical level is the soil test level, below which a crop response to a nutrient application may be expected, and above which no crop response is expected. At very high soil test levels crop yield may decrease.
*Rutgers Cooperative Extension Service FS719

Back to subject of this blog, consultants, agronomist, and producers need to take a good look at the way P recs are being made this year.  Profitability and staying in the black is the number 1, 2, and 3 topic being discussed right now.  The simple fact is there is no economic benefit to apply rate above crop need, regardless of yield level. The figures above demonstrate both the yield response to fertilizer based upon soil test. At the point of Critical level crop response / increase in yield is zero. What should also be understood is that in the replacement approach P fertilizer is still added even when soil test is in Optimum level.  This also referred to as maintenance, or maintaining the current level of fertility by replacing removal. If your program is a replacement program this is not a recommendation to drop it completely. Over a period of time of high removal soil test P levels can and will be drawn down. But one year or even two years of fertilizing 100 bpa wheat based on sufficiency will not drop soil test levels. On average soils contain between 400 and 6000 pounds of total phosphorus which in the soil in three over arching forms plant available, labile, and fixed. Plant available is well plant available and fixed is non plant available.  The labile form is intermediate form of P.  When P is labile it can be easily converted to plant available or fixed. When a plant takes up P the system will convert labile P into available P. When we apply P fertilizer the greatest majority of was is applied makes it to the labile and fixed forms in a relatively short period of time.  For more in-depth information on P in the soil you can visit the SOIL 4234 Soil Fertility course and watch recorded lectures Fall 2015 10 26-30 Link .

How to tell if your P recs have a replacement factor, not including calling your agronomist. First replacement recs are based on yield goal, so if you change your yield goal your rate will change.  The other and easier way is to compare your rates to the table below.  Most of the regional Land Grant Universities have very similar sufficiency recs for wheat.  Another aspect of the sufficiency approach is the percent sufficiency value itself.  The sufficiency can provide one more layer in the decision making process for those who are near the critical or 100% level.  Response and likelihood of response to P is not equal. At the lowest levels the likelihood of response is very high and the yield increase per unit of fertilizer is the greatest. As soil test values near critical (32.5 ppm or 65 STP) the likelihood of response and amount of yield increase due to fertilizer P decreases significantly.  At a STP of 10 the crop will only produce 70% of its environmental potential if P is not added while at a STP of 40 the crop will make 90% of its potential.  The combination of % sufficiency and yield goal can be used to determine economic value of added P.

*Oklahoma State University Soil Test Interpretations. PSS-2225 *Mehlich 3 and Bray P are similar *PPM (parts per million) is used by most labs *STP (soil test P) is a conversion used by some Universities. Equivalent to pounds per acre. * for a 0-6” in soil sample PPM * 2 = STP.

*From Oklahoma State University Soil Test Interpretations. Fact Sheet PSS-2225
*Based on Mehlich 3
*PPM (parts per million) is used by most labs
*STP (soil test P) is a conversion used by some Universities. Equivalent to pounds per acre.
* for a 0-6” in soil sample PPM * 2 = STP.

This data is available from OSU in multiple forms from the Factsheet PSS-2225, the SWFAL website, Pete Sheets quick cards, and the Field Guide App.

soapbox_ST

This year with margins tight soil testing is more important than ever before.  Knowing the likelihood of response and appropriate amount of fertilizer to apply will be critical maximizing the return on fertilizer invest while maximizing the quality and amount of grain we can produce.  Visit with your consultant or agronomist to discuss what the best approach is for your operation. Lets ride this market out, get the most out of every input and come out of this down cycle strong.

Feel free to contact me with any questions you may have.
Brian
b.arnall@okstate.edu

 

2015-16 Wheat Crop Nitrogen Review

From trials to phone calls (and text messages, and tweets, and ect. ect) I have gathered a fairly good picture of this years winter wheat nitrogen story.  And as normal, nothing was normal.  Overall I seen/heard three distinct trends 1) Did not take much to make a lot 2) took a ton to make a lot 3) saw a response (N-rich strip or cow-pow) but fertilizer never kicked in. Covers most of the options, doesn’t it.

P1000542

The N-rich strips really came out over all very good this year.  N-Rich Strip Blog. On average many of those using the N-Rich Strip and SBNRC (SBNRC Blog) producers have been getting in the neighborhood of 1.0-1.3 lbs of N applied per bushel produced.  This year the numbers ran from 0.66 to 2.3 lbs of N per bushel.  In both extremes I believe it can be explained via the field history and the N-Cycle.

N-Cycle

Nitrogen Cycle Pete’s Sheet

In at least two fields, documented with calibrated yield monitors, the N-Rich Strip and SBNRC lead to massive yields on limited N. One quarter of IBA bumped 86 bpa average on 47 lbs of N while a second quarter, also IBA, managed 94 bpa average on about 52 units of N. We are currently running grain samples from these fields to look protein levels.

The other side of the boat were those with N-Rich strip calling for +2.0 lbs N per bushel.  I had received notes from producers without N-rich strips saying that they could predict yield based on the amount of N applied and it was a 2 to 1 ratio.  Not always but many of these high N demand fields where wheat following a summer or double crop or corn or sorghum. While many of the low N demand fields were wheat after wheat or wheat after canola. In a rotational study that had been first implemented in the 2014-15 crop year I saw big differences due to previous crop.  The picture below was taken in early March.  The straw residue in wheat after wheat had just sucked up the nitrogen.  While it was evident the residue from the canola broke down at a much more rapid pace releasing any and all residual nutrients early.

Rotation

The yield differences were striking. The canola rotation benefited the un-fertilized plots by 22 bpa and even with 90 lbs of N applied having canola in the rotation increased yields by 12 bpa.  We are looking and grain quality and residual soil sample now. I am sure there will be a more indepth blog to follow.

Canola Wheat Rotation study year two yield average. yields average across previous years N-rates.

Canola Wheat Rotation study year two yield average. yields average across previous years N-rates.

Another BIG story from the 2015-16 wheat crop was the lack of benefit from any N applied pre-plant. It really took top-dress N this year to make a crop.  Due to our wet early fall and prolong cold winter N applied pre was either lost or tied up late.  Work by Dr. Ruans Soil Fertility Program really documented the lack luster pre-plant N effect. The figure below shows 4 location of a rate by timing student.  The number at the bottom of each graph is a rate by time (30/0 means 30 lbs Pre-0 lbs Top, 60/30 means 60 lbs Pre-30 lbs Top).  At every single location 0/60 beat 60/0. Top-dress N was better than Pre-plant N.

Driver_Raun

Figure 1. Work from Ethan Driver and Dr. Bill Raun. Study looked at rate and timing of N fertilization in wheat. Treatments are ordered by total N applied.

The last observation was lack of response from applied N even though the crop was deficient.  Seen this in both the NE and NW corners.  I would hazard with most of the circumstance it was due to a tie up of applied N by the previous crops residue.  The length at which the winter stretched into spring residue break down was also delayed.

Take Home 

Here it is folks APPLY NITROGEN RICH STRIPS.  Just do it, 18 years of research preformed in Oklahoma on winter wheat says it works. Hold off on heavy pre-plant N even if anhydrous is cheap.  It does matter how cheap it is if it doesn’t make it to the crop.  Will we see another year like 2015-16, do not know and not willing to place money on either side. What we do know is in Oklahoma split applying nitrogen allows you to take weather into account and the N-Rich strip pays dividends.

There are several fact sheets available on top-dressing N and the application of N-Rich strips.  Contact your local Oklahoma Cooperative Extension Service county educator to get a copy and see if they have a GreenSeeker sensor on hand.

DAP vs MAP, Source may matter!

Historically the two primary sources of phosphorus have had different homes in Oklahoma. In general terms MAP (11-52-0) sales was focused in Panhandle and  south west, while DAP (18-46-0) dominated the central plains.  Now I see the availability of MAP is increasing in central Oklahoma. For many this is great, with MAP more P can be applied with less material. which can over all reduce the cost per acre. There is a significant amount of good research that documents that source of phosphorus seldom matters. However this said, there is a fairly large subset of the area that needs to watch what they buy and where they apply it.

If you are operating under optimum soil conditions the research shows time and time again source does not matter especially for a starter.  In a recent study just completed by OSU multiple sources (dry, liquid, ortho, poly ect ect) of P were evaluated.  Regardless of source there was no significant difference in yield.  With the exception of the low pH site. The reason DAP was so predominate in central Ok, soil acidity.  See an older blog on Banding P in acidic soils.

Picture1

Figure 1. The cover of an extension brochure distributed in Oklahoma during the 1980s.

When DAP is applied, the soil solution pH surrounding the granule will be alkaline with a pH of 7.8-8.2. This is a two fold win on soil acidity aka aluminum (Al) toxicity.  The increase in pH around the prill reduces Al content and extends the life of P, and as the pH comes back down the P ties up Al and allows the plant to keep going. However, the initial pH around the MAP granule ranges from an acid pH of 3.5-4.2.  There is short term  pH change in the opposite direction of DAP, however the the Al right around the prill becomes more available and in theory ties up P even faster.

Below is a table showing the yield, relative to untreated check, of in-furrow DAP and MAP treatments in winter wheat.  The N401 location had a ph 6.1  while Perk (green) has a pH of 4.8.  At Perkins in the low pH, both forms of P significantly increased yeild, almost 20 bushel on the average.  DAP however was 5 bushel per acre better than MAP. At the N40 site the yield difference between the two sources was 1 bushel.

MAPvDAP2

Relative yield winter wheat grain yield MAP and DAP both applied at equal rates of P (32 lbs P2O5 ac) when compared to a untreated check.

In general it can be said that in acid soils DAP will out preform MAP while in calcareous high pH soils MAP can out preform DAP. So regarding the earlier statement about the traditional sales area of MAP or DAP if you look at the soil pH of samples went into the Oklahoma State University Soil, Water, and Forage Analytical lab the distribution makes since.

State pH

Average soil pH of samples sent into OSU soil water forage analytical lab by county.

In the end game price point and accessibility drives the system.  In soils with adequate soil pH levels, from about 5.7 to around 7.0, get the source which is cheapest per lbs of nutrient delivered and easiest to work with. But if you are banding phosphorus in row with your wheat crop because you have soil acidity, DAP should be your primary source.

Herbicide and UAN tank mixed for top-dress

Spring is the time that many wheat producers apply herbicide and nitrogen (N) fertilizer.  For many this can be accomplished in a single pass by tank mixing the herbicide and UAN. In most cases this is an effective practice which eliminates one pass over the field.  There are some scenarios in which this practice is ill advised. One such scenario is high temperatures which would lead to excessive leaf burn and crop damage. The other scenario is no-till and that will be the focus of this article. Ruling out warm temperature tank mixing herbicides and nitrogen, assuming the herbicide can be tank mixed, is a good practice.  No-till on the other hand can be a different issue.

No till drill and ammonia oxide application

Situations with a lot of residue and smaller wheat is common during top-dress.

The problem in no-till comes from the liquid application method needed to apply herbicides, flat flan. To get a good kill with the herbicide the spray pattern needs to have good coverage, i.e a lot of small droplets to ensure maximum surface area impacted.  Unfortunately there are four primary fates of UAN  when applied via flat fan nozzles.  The UAN could be taken directly up into the wheat plant via absorption through the leaves, the UAN could reach the soil and go into the soil solution or absorbed onto the soil itself, the UAN can be taken up by weeds, or the UAN droplet may hit dead plant tissue and be adsorbed into the residue.

20090226-1864

UAN applied with a flat fan will hit a growing plant, the soil, or residue.

The fourth fate of UAN presented is what can make the tank mix less efficient than a two pass system.  In a no-till system any UAN that hits residue should be counted as lost, for the short term. The decision to go with a one pass or two pass system can be aided by evaluating the amount of canopy coverage.  For example if the no-till field has 50% canopy coverage then one could estimate 50% of the UAN applied via a one pass system would be tied up in the residue.  The cost of a second application could then be compared to the lost N.  If 15 gallon of 28-0-0 was being applied then approximately 22.5 lbs of N would be tied up by the straw. At a price of $0.40 per lb on N, that is $9.00 worth of N.  Conversely if the canopy coverage was 80% only 20% or 9 lbs of N would be tied up in the residue. Saving the $3.60 in nitrogen would not justify a second trip over the field. Luckily OSU recently released the Canopeo app which uses a cell phones camera to take pictures and quickly and accurately determine % canopy coverage.  Canopeo is available for iOS and android http://canopeoapp.com/.

In fields with a high amount of residue or limited canopy coverage UAN should be applied with streamer nozzles.  This will concentration the fertilizer into streams which will allow the UAN to have enough volume to move off the residue and into the soil.

So as the decision is being made to tank mix herbicide and UAN or make two passes take into consideration: % canopy coverage, rate of UAN (how much could be lost), cost of UAN per pound, and cost of a second trip over the field.

Below is an excerpt from the publication Best Management Practices for Nitrogen Fertilizer in Missouri; Peter C. Scharf and John A. Lory. http://plantsci.missouri.edu/nutrientmanagement/nitrogen/practices.htm

Broadcasting UAN solution (28 percent to 32 percent N) is not recommended when residue levels are high because of the potential for the N in the droplets to become tied up on the residue. Dribbling the solution in a surface band will reduce tie-up on residue, and knife or coulter injection will eliminate it. Limited research suggests that the same conclusions probably apply for grass hay or pasture. Broadcast UAN solution is also susceptible to volatile loss of N to the air in the same way as urea, but only half as much will be lost (half of the N in UAN solution is in the urea form).