ABOUT ME

osunpk

osunpk

Since 2008 I have served as the Precision Nutrient Management Extension Specialist for Oklahoma State University. I work in Wheat, Corn, Sorghum, Cotton, Soybean, Canola, Sweet Sorghum, Sesame, Pasture/Hay. My work focuses on providing information and tools to producers that will lead to improved nutrient management practices and increased profitability of Oklahoma production agriculture

View Full Profile →

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 36 other followers

Results from 1st year of Soybean Starter Work

In the spring of 2014 we initiated what was to be the first year of a three year project evaluating starter fertilizers for soybean production in the southern Great Plains.  The first and second year was and is being funded by the Oklahoma Soybean Board.

Year one was a bit experimental in that with so many products on the market we needed some initial work to help focus the direction for years two and three.  I also added a treatment which I knew would have significant negative impact, for extension reasons.  Keep in mind two locations in a single year does not make an experiment nor provide enough information to draw a definite conclusion.   It is however enough to learn some lessons from and for us to plan for our 2015 trials.

The 2014 trial consisted of 12 treatments, Figure 1 and Figure 2.  In these treatments I wanted to see the impact of a standard practice, see if a specific nutrient may be more so beneficial, and evaluate a few popular products.  The spring of 2014 started out dry so at one of our two locations we pre-watered.  This was done by hauling water to the Lake Carl Blackwell (LCB) 1000 gallons at a time and pumping through sprinklers.  The other site, Perkins, we delayed planting until we had moisture.

Treatment Structure and rates for the 1st year of the Soybean Starter Study.

Treatment Structure and rates for the 1st year of the Soybean Starter Study.

List of fertilizers and products used.

List of fertilizers and products used.

Image taken while planting the Soybean Starter study at Perkins.  A CO2 system was used to deliver starter fertilizers with seed.

Image taken while planting the Soybean Starter study at Perkins. A CO2 system was used to deliver starter fertilizers with seed.

The two locations were also selected due to differences in soil fertility.  The LCB site is has good soil fertility, with exception of phosphorus (P), and the Perkins site pH was an issue.  I would have expected a benefit from adding P at both of these locations.  Figure 4 shows the soil test results.

Soil Test results from LCB and Perkins.

Soil Test results from LCB and Perkins.

At LCB as expected some of the treatments (Thio-Sul) reduced stand, some unexpectedly reduced stand (Fe) and others had less impact on stand (APP 5.0) than expected.  The growth at LCB was tremendous, the 30 in rows covered over very quickly and the majority of the treatments hit me waist high by early August (I am 6’0”).  Many of the treatments showed greater growth than check.  But when it comes down to it, grain pays and green does not.  Statistically there were no treatments that out preformed the un-treated check, however the K-Leaf and 9-18-9 did make 3 and 2 bpa more than the check respectively.  What I am hypothesizing at this site is that the added nutrients, especially those with high P levels, significantly increased vegetative grown and these big plants were delayed into going reproductive and they started setting pods later in much hotter weather.  While riding in the combine I could see that the plots with compact plants with clearly defined rows out yielded those were the vines had crossed over and we harvested through more of a solid mat of mature plants.  A hot August is not uncommon and I am curious on whether this trend repeats itself.  If it does this may direct us into research evaluating ways to force/promote the reproductive stage to start in these big plants.  Even if we can force flowering to start earlier, it’s unknown whether yields will increase or not.

Yield and Stand counts from the 2014 LCB Soybean Starter Study.

Yield and Stand counts from the 2014 LCB Soybean Starter Study.

The Check plot at LCB were plants noticeably a bit smaller and more yellow than the neighbors with phosphorus.

The Check plot at LCB were plants noticeably a bit smaller and more yellow than the neighbors with phosphorus.

Soybeans at LCB on August 4th.

Soybeans at LCB on August 4th.

The same trends in treatments reducing stand can be seen at Perkins, however the impact was less extreme.  Perkins being planted later due to waiting on moisture forced a later flowering date and I believe reduced overall yields.  But the addition of P at this low pH site definitely made a difference.  While again no treatments were statistically greater than the un-treated check the 2.5 gpa APP, DAP broadcast, APP/H2O, and Pro-Germ/H20 treatments increased yield by 5.6, 4.2, 3.8 and 1.7 bpa respectively.

Yield and Stand Counts from the Perkins 2014 Soybean Starter Study.

Yield and Stand Counts from the Perkins 2014 Soybean Starter Study.

Take home from year one was that at LCB the addition of a starter fertilizer had little benefit and if done wrong could cost you yield while at the low pH site of Perkins an addition 2.5 gallons of APP did get a 5 bpa bump, but do to variability in the trial the increase was not statistically significant.  This year we will drop some of the treatments and incorporate a few new treatments.   Based on the current weather we look to potentially being able to start with better soil moisture at planting.  Again do not take this work and significantly adjust any plans you have for your 2015 soybean crop. This is however some interesting findings that I wanted to share and make everyone aware of.  Finally thank you to the Oklahoma Soybean Board for providing funding for this work. www.oksoy.org/ 

 

 

4 Keys to Reaching Grain Sorghums Yield Potential

When I started writing this blog (3.13.2105) Ok grain elevator cash bids for grain sorghum aka milo was 6.61-7.70 cwt (3.7-4.31 per bushel) and corn was at 3.64-4.06 per bushel. Meaning there is currently a premium on sorghum grain.  This difference among other things has increased the interest in planting sorghum.  Of late I have been quite successful, at least on a small-scale, at producing sorghum yield in the 120-150 bpa range, thanks to the advice of Rick Kochenower former OSU sorghum specialist.  Both of us believe that every year many producers are leaving significant bushels on the table due to one or two miss steps.  I wanted to take this opportunity to share what is in my opinion the keys in producing a bumper sorghum crop.  I should note that the primary key is out of our control, rain.

Key 1.  Planting date, the optimum planting date for grain sorghum is generally when soil temperatures reach 60° F and increase after planting.  For much of the region that I believe is best suited for sorghum this falls between April 1 and April 15 for south of I40 and April 15 and May 1 north of I40.  graph below shows the long-term average daily 4″ soil temp (bare soil) for Apache, Blackwell, Cherokee, and Vinita.  It is easy to see how your location within the state can impact soil temps.

Long term average 4 inch soil temps from Blackwell, Apache, Cherokee, and Vinita for bare soil.  Data from the Mesonet.org.

Long term average 4 inch soil temps from Blackwell, Apache, Cherokee, and Vinita for bare soil. Data from the Mesonet.org.

You should not forget however that tillage practices will also impact soil temps. The two graphs below show the  long-term average daily 4″ soil temp for Cherokee and Blackwell for both bare soil and under sod.  Note that when the soil is covered by residue it warms slower. The two figures also show that residue will have more impact in some areas more so than others.

Long term average  4 inch soil temps at Cherokee for bare soil and under sod.  Data from the Mesonet.org.

Long term average 4 inch soil temps at Cherokee for bare soil and under sod. Data from the Mesonet.org.

Long term average 4 inch soil temps at Blackwell for bare soil and under sod.  Data from the Mesonet.org.

Long term average 4 inch soil temps at Blackwell for bare soil and under sod. Data from the Mesonet.org.

My best word of advise is to keep a watchful eye on the Mesonet. While the long-term average is nice to know here in Oklahoma the difference in weather from one year to the next can be huge.  The figure below shows the  average daily 4″ soil temp (below sod) from Blackwell for the past five years.  Link to Mesonet Soil Temp page  Click here.

Average  4 inch soil temps at Blackwell for 2010, 2011, 2012, 2013, and 2014 for under sod.  Data from the Mesonet.org.

Average 4 inch soil temps at Blackwell for 2010, 2011, 2012, 2013, and 2014 for under sod. Data from the Mesonet.org.

Another great resource is a report on planting date written by Rick Kochenower presented to RMA. Link to report.

 

Key 2. Hybrid selection, primarily maturity group selection. Rick has created a great graphic that helps put a planting date window with maturity group.  It is always important to visit with your local seed dealer to find out what has been performing best in your region and consider the importance of stay-green, standablilty and disease packages. But for me the number one key is the selection of maturity group. This should be based upon planting date and harvest strategies. Below is a great graphic created by Rick, while this may not be scientific it is a great guide created via years of experience.  I also recommend that if you are planting a significant amount of acres you should diversify your maturity groups. Not only does this spread out he harvest window but it also you to spread the risk of high temps coming early or late.  An additional resource is the Sorghum Performance trial summary located on the Ok Panhandle Research and Extension Center website.  Click here.

Timeline for optimum planting date (N of I-40) and proper maturity groups.  Developed my Rick Kochenower (Chromatin seed)

Timeline for optimum planting date (N of I-40) and proper maturity groups. Developed by Rick Kochenower (Chromatin seed)

Key 3. Soil Fertility, while soil pH plays a big role on sorghum productivity but it is too late in the game to do much about it this year. So the most important things to keep in mind on fertilizing sorghum are your macro-nutrients nitrogen (N), phosphorous (P) and potassium (K).   It is my opinion that historically producers have underestimated the yield potential of sorghum and therefore lost yield due to under application on N. You should expect more than 60 to 80 bushel out of your crop if you put the right seed in the ground, at the right time and in the right way.
Ask around look at Rick’s yield data, producers in N. Central Ok on a good soil should be going for 125+ bpa easy. Unfortunately you are unlikely to hit these yield levels if you fertilize for a 75 bpa crop. An easy rule of thumb on N fertilization is 1.2 lbs of N per bushel, for a more exact number take a look at the image below.  This comes from the corn and sorghum PeteSheet and is the same table that comes from the Soil Fertility Handbook. (If you would like some Pete Sheets just send me an email requesting them at b.arnall@okstate.edu, Link to PeteSheets page).

Nitrogen, Phosphorus and Potassium Recommendations for corn and sorghum production.  Adapted from the Field guide and PeteSheet available at www.npk.okstate.edu

Nitrogen, Phosphorus and Potassium Recommendations for corn and sorghum production. Adapted from the Field guide and PeteSheet available at http://www.npk.okstate.edu

Key 4. Weed Control With sorghum utilizing a pre-plant herbicide with residual is extremely important due to the lack of over the top options.  Most times proper weed control will be accomplished by utilizing concept treated seed and use of labeled rates of a pre-emergent grass control herbicide combined with atrazine.

While I primarily focus of the four keys above there are a few other important items to consider.

Population: Prefer to think in terms of seeds per acre instead of lbs per acre.  This comes into to play with the use of a planter.  Rick Kochenower says “for seeding rate(on 30 inch rows), it isn’t  as critical as most people think it is.  Because most guys in Oklahoma tend  to under plant not over  plant.  I always suggested 45,000 but as you look at the last slide it really don’t matter much.  The way I always liked putting it is to make you sure have enough out there to not have to replant, because being late hurts more than having to few too many or too few plants.”

Row spacing:  I like 30, but many may not have a planter so I suggest at least plugging every other hole in the drill to be at a 12″-20″ spacing. Make sure your population is correct for your row spacing.  For this consult with your local seed dealer to match cultivar with row spacing and proper population.

Insects: Scouting for aphids and head midge is very important, these little critters are yield robbers and can gum up the works at harvest.

Harvest prep:  I almost put this as the fifth key.  By chemically maturing/terminating  your crop you are both able to increase harvest efficiency and preserve moisture for a following winter crop of wheat or canola.

While this is a good start I suggest a visit with your local OSU Extension educator, consultant or seed dealer for information about your specific situation.  Just know the crop has great potential to yield big if treated right.  I like to say don’t treat your sorghum crop like the stray you adopted, treat it like your hunting dog that you traveled halfway across the country to pick up.  Good luck in 2015 and I hope the rains fall when and were needed.

Saline and Sodic Seep Renovation A potential Positive Impact of Drought

This article is written by Dr. Jason Warren, OSU Soil and Water Conservation State Extension Specialist. 

The drought has caused numerous negative impacts on Agriculture in Oklahoma.  However its impact on our ability to renovate some types of Saline and/or Sodic soils has been a positive.  Saline and sodic seeps are referred to by many names, including: salt spots, alkaline spots or slick spots.  They are all similar in that they contain excessive amounts of salt or sodium that prevent plant growth.  However there are various differences that influence how we renovate these sites.

These areas are classified by the amount and type of salt present.  Saline soils are those that contain an EC greater than 4000 μmhos/cm and less than 15% Exchangeable sodium.  A Saline/sodic soil contains an EC greater than 4000 μmhos/cm and greater than 15% exchangeable sodium. Lastly, the Sodic soils contain less than 4000 μmhos/cm and greater than 15% exchangeable sodium.  Given these differences it is important to have soils from these barren areas tested before a renovation plan is developed.  The soil tests will provide recommendations for renovation and more detail on these strategies can be found in factsheet PSS-2226.

Beyond the classifications briefly mentioned above there are different ways in which these saline and sodic soils form.  Some of these soils are formed from parent material that contained excessive salt or sodium.   Others are formed when ground water moves to the surface through evaporation and deposits salt as the water is lost to the atmosphere.   The drought conditions we are current experiencing can impact our ability to renovate the latter.

2011

2013

 

Figure 1: The upper picture was taken in Feb. 2011 and the bottom picture was taken in April 2013.


Hydraulic seeps, those formed from the movement of groundwater to the surface, are often found in low lying areas of the landscape where the groundwater is close enough to the soil surface that water can be conducted through capillary force to the soil surface.  These forces are similar to those that allow use to suck water up through a straw but in the case of a saline seep evaporation from the soil surface provides the hydraulic gradient that pulls water from the water table.  The drought has caused the water table in many areas to subside and become too deep for these force to pull water to the surface and deposit salts.

Figure 1 shows a saline/sodic soil in 2011 and again in 2013.  This site had been treated with Gypsum as described factsheet PSS -2226 in 2007.  However, because of a shallow water table that persisted until the onset of drought in 2011 the renovation effort was not successful because there was insufficient movement of water through the profile to leach the salts down out of the soil surface.   These soils are in proximity to Stillwater Creek and Lake Carl Blackwell.  The water table has declined which allows limited rainfall experienced at this site in 2012-13 to move the salts down out of the soil surface.  This in turn has allowed crop establishment further improves water infiltration by protecting the soil from crusting.

The drop in most water tables across Oklahoma, particularly western Oklahoma where these salt spots are most common, provides for a unique opportunity to renovate hydraulic salt spots.  Again the first course of action is to collect a soil sample to determine what types of salts are present.  You can also make an effort to determine how the salt spot was formed.  This information can be found on the soil survey at http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm.  Your county extension educator or local NRCS can help to interpret this information.

We have observed that our success in renovating a hydraulic seep near Stillwater was greatly improved during this period of drought.  However, given the fact that our sub soils are generally dry throughout Oklahoma, which improves our ability to leach salts, the drought should improve our ability to renovate those formed from parent material as well.

Time to start topdressing wheat

osunpk:

My favorite part of the blog “Don’t have an N-Rich Strip? It’d be a lot cooler if you did.”

Originally posted on World of Wheat:

There are few crop inputs that deliver as much return on investment as nitrogen fertilizer. It takes approximately two pounds of nitrogen, costing approximately $1.00, to produce one bushel of grain worth about $5.00. Of course, nitrogen is not the only yield determining factor in a wheat crop. Also, the law of diminishing marginal returns eventually kicks in, but nitrogen fertilizer is still one of the safest bets in the house.

Top dress nitrogen fertilizer is especially important because it is applied and utilized at a time when the plant is transitioning from vegetative to reproductive growth. Several things, including the number of potential grain sites, are determined just prior to jointing and it is imperative that the plant has the fuel it needs to complete these tasks. Jointing also marks the beginning of rapid nitrogen uptake by the plant which is used to build new leaves, stem, and the…

View original 707 more words

Agriculture Apps, 200 strong and growing

It was just 11 months ago when I wrote my last blog on Ag apps.  Since that time I have presented on the topic several times, added nearly 100 new apps, have filmed several designated segment on sunup featuring apps (these can be seen at http://www.youtube.com/osunpk), and released two (soon to be three) apps myself.  Below is the introductory slide I have been using in all of my app talks, on this slide you can see how the number of apps have been increasing overtime. In this update I wanted to share some of the new sections I have added to manage the vast number apps and go through some of my favorite apps in each of the sections.

Coverslide

Finding the right app has not changed as I still just give an app 3 minutes before a keep or drop decision is made, however since a year ago some of the key words are now less useful.  For example a search for wheat will bring up droves of gluten free diet apps.  None of these fit the bill for what I am looking for. Though out the blog you can click on pictures screenshots to get a better view of the app buttons.

Ag News and Weather

Ag News

Still a very large section with little change for my recommendations, just go with what suits you in layout and reporting.  I personally use RonOnRON (Ron Hays, the voice of Oklahoma Agriculture), DTN/PF, AG/Web, and AgWired.

 

Ag Resources

Ag Resources

This includes peer review publications, resource guides and extension materials.

 

Calculators

Calculators

The majority of the Calculator apps preform relatively simple functions without the need of cellular or wifi connectivity. The Ag PhDs have two apps in the section I want to highlight, HarvestLoss and Fert. Removal. Both apps are useful tools in making management decisions. HarvestLoss allows the user to calculate the economic loss of a poorly set combine while Fert. Removal allows the user to select from a wide range of crops and see an exit ate of nutrient removal based upon selected yield level. Other useful apps are Growing Degree which allows the user to see cumulative heat units a crop has received anywhere in the US, Corn Yield Calc estimates corn yield based on ear girth and length, Canola Calc is a great apps produced by Pioneer which calculates the proper planting rate of canola based upon several factors and the Kansas Wheat Yield Calculator KWYC, uses growth stage stalk counts, height and/or NDVI to estimate potential grain yield.

 

Crop Tools

Crop Tools

This section is filled with University Extension handbooks such as Purdue’s Field Guide ($12.99), University of Arkansas Corn Advisor, University of Kentucky Corn Production, and one private groups MFA Agronomy. Each of these guides are quality apps and should be chosen based upon geography or personal preference. The university apps mirror their respective hard copies however UK’s app added a nice update section highlighting local Ag news. MFA’s app is strong in pesticides with good herbicide performance data.

 

Fertilizer

Fetilizer

For any producer who regularly applies animal waste the Manure Calc by the University of Nebraska is a great tool. The University of Wisconsin has a nice app in N Price Calculator and the Saskatchewan Soil Conservation association (SSCA) has created a nice fertilizer blend app. Oklahoma State University has Ammonia Loss Calculator which uses soil pH and environmental conditions to estimate N losses from surface applied urea.

OSUNPK

OSUNPK

I am also getting into the app game with two recently released apps the Canola Starter and Field Guide. Canola Starter provides a recommendation for safe starter rates based on row width and fertilizer source. Field Guide is app version of my Nutrient Management Field Guide, this app includes a nutrient removal calculator, nutrient deficiency ID tool, and fertilizer rate calculators. Along with these I have several in the wings with titles like Crop Nutrients in Irrigation, GDDs>0, and Wildlife FoodPlot.

ID Tools

ID Tools

As mentioned in my first two blogs the University of Missouri’s IDWeeds app was the first taxonomy based weed identification tool. I still use it regularly but both BASF and Monsanto have brought products to the table, both named WeedID, that are very user friendly and effective. Plant Images ($5.00) is a library of nutrient deficiency photos from a large selection of crops. Years and Ag PhDs also have apps available with deficiency images named Yara Checkit and Crop Nutrient Deficiencies. Cereal Disease ID app by BASF is intended for the UK and DuPonts Pestbook for Australian cotton farmers but I find that both can be very useful even in Oklahoma.

Pay to Play, Registrations

Pay To Play

I have heard several good things about many of these apps.  However they reguire the user to either be an employee or patron of the company or online registration. In a pay to pay app I would expect an all inclusive tool that could replace several free apps and preform record keeping duties.

Records

Records

To be honest this is not a section I use much as I do not have an operation to maintain records on. However just by walking through the apps Crop Calculator by the University of Wisconsin and Pesticide Recordkeeping (PeRK) by University of Nebraska.

Scouting/Mapping

Scouting_Mapping

This section has apps that I classify as decision aid tools that could be used by someone scouting crops and apps that can be used to map and or collect field notes. South Dakota State has two great tools in Soy Diseases and NPIPM Soybean Guide.    Scout and Sirrus.

Seed Select

SeedSelect

Company based, Pioneers app products are some of the best with Plantability and Estimator

Sprayer Chemical

Sprayer_Chemicals

Some things haven’t changed I still use Tank Mix Calc and Spray Select on a very regular basis. But over the past year a few companies have added product finders and Clemson University has released a very nice sprayer calibration app named Calibrate.

Weather

Weather

The last two apps are Mesonet and Climate Corp Basic. You will notice the background on the screen shot is slightly different. That is because neither of these apps is kept Ina folder, both are on my home screen. Whether it is rain, temp, or wind weather impacts all aspects of agriculture therefore these two apps are always within one tap. For any producer in Oklahoma the Mesonet is an amazing system with 120 automated weather stations spread evenly across the state. This app just provides this data with just a few swipes of the finger. For those outside of Ok Climate Basic allows producers to first save field of interest and then monitor rainfall and environmental conditions of each field. While not extremely accurate it is defiantly close enough for those with a wide territory to be a very handy app.
For more information and some screen shots of the apps in action either visit my website http://npk.okstate.edu/presentations or my YouTube site http://www.youtube.com/osunpk under the playlist OSU_NPK on Sunup.

How to make $100,000 in a day

osunpk:

This is a familiar soap box. SOIL SAMPLE, SOIL SAMPLE, SOIL SAMPLE.

Originally posted on World of Wheat:

No, this blog post is not about a get rich quick scheme, but there is a way for the average wheat farmer in the southern Great Plains to add $50,000 to $100,000 to the bottom line in a single day. Most soil tests I have pulled this summer have shown 50 to 90 lb/ac of NO3-N in the top 18 inches of soil. Ninety pounds of N equates to about $45 of N fertilizer, and this knowledge could save a 2,500 acre wheat farmer in excess of $100,000 in fertilizer cost. Soil testing is laborious, but the potential economic returns for spending a day or two soil sampling are outstanding.

There is still time to soil sample. Soil samples only take a few days to process once they are in the OSU lab. It is not unusual for transit time to the lab to the slowest part of the process…

View original 219 more words

Nutrient Products: Stabilizers, Enhancers, Safeners, Biologicals and so on.

In this blog I am not going to tell you what to use or what not to use. In fact I will not mention a single product name. What I will do is hopefully provide some food for thought, new knowledge and direction.

First I want to approach a topic I have been called out on several times. I believe there is a stigma that University researchers and extension specialists do not want products to work.  It may seem that way at times but it is far from the truth. The reality is that all of us are scientists and know someone may be inventing the product that changes nutrient management as we speak.  The issue is that most of us have been jaded. While I may be younger I have over 11 years experience, testing “products” in the field, and that includes dozens of products. I have sprayed, spread, tossed, drilled, mixed and applied everything under the sun, with  hopes that I will see that one thing I am always looking for, MORE GRAIN…

The truth is Everything works Sometimes yet Nothing works ALL the time. I and others in my profession do not expect anything to work 100% of the time, I am personally looking for something that will provide a checkmark in the win column 50% of the time. A win is the result of one of two things, more money in the producers pocket or less nutrients in the water or air.  Products can increase vigor, nutrient uptake, chlorophyll concentration, greenness but not yield. What Co-op or elevator pays for any of those attributes?  Grain makes green.

 

snake-oil snake_oil_ad 60-60168_MECH

 

 

 

 

 

 

 

 

 

So many safeners, stabilizers, enhancers, biologicals, and on and on are available, so what should a producer do?  Here are few things to think about. Ask yourself “ what part of my nutrient management plan can I get the most bang from improving”?

If the answer is Nitrogen (N) there are three basic categories: Urease inhibition, Nitrification inhibitor, and slow release. All are methods of preventing loss; the last two are preventing loss from water movement.

Urease inhibitors prevent the conversion of Urea to NH3 (ammonia). This conversion is typically a good thing, unless it happens out in the open.  Ideally any urea containing product is incorporated with tillage or rain. However, in No-till when urea is broadcast and no significant rainfall events (>0.5”) occur, N loss is likely. The urea prill starts dissolving in the presence of moisture, this can be a light rain or dew, and urease starts converting urea into NH3. As the system dries and the day warms, if there was not enough moisture to move the NH3 into the soil the wind will drive NH3 into the atmosphere. Nitrogen loss via this pathway can range from 5% to 40% of the total N applied.

 

Graphic of Urea's conversion to plant available ammonium.

Graphic of Urea’s conversion to plant available ammonium.

Wet Soil

Urea placed on a wet soil under two different temperatures. Number in white is hours after application.

Dry Soil

Urea placed on a dry soil, on top no water added, bottom left is moisture from the subsurface, and bottom right is simulated rain fall of 1/2″. Number in white is hours after application.

 

 

 

 

 

 

 

 

 

 

 

Nitrification inhibitors prevent the conversion of NH4 into NO3.  Both are plant available N sources but NH4 is a positively charged compound that will form a bound with the negatively charged soil particles.  Nitrate (NO3) is negatively charged and will flow with the water, in corn country that tends to be right down the tile drainage.  Nitrate will also be converted to gasses under wet water logged soil conditions. Nitrate is lost in the presence of water, this means I do not typically recommend nitrification inhibitors for western OK, KS, TX dryland wheat producers.

Slow release N (SRN) comes in a range of forms: coated, long chain polymer, organic and many versions in each category.   Again, water is the reason for the use of SRN sources. Slow release N whether coated or other have specific release patterns which are controlled by moisture, temperature and sometimes microbes.  The release patterns of SRNS are not the same and may not work across crops and landscapes. For instance in Oklahoma the uptake pattern of nutrients for dryland corn in the North East is not that same as irrigated corn in the West. The little nuances in the growth pattern of a crop can make or break your SRN.

While N products have been on the market for decade’s phosphorus enhancers and stabilizers are relatively new, resulting in many of my peers holding back on providing recommendations until field trials could be conducted. At this point many of us do have a better understanding of what’s available and are able to provide our regional recommendations.  Phosphorus products are not sold to prevent loss like their N counterparts; they are sold to make the applied P more available. On a scale of 1 to 10, P reactivity with other elements in the soil is a 9.9.  If there is available Ca, Mg, Fe, or Al, phosphorus is reacting with it.  In the southern Great Plains it is not uncommon for a soil to have 3,000-5,000 lbs of available Ca, a soil with a pH of 4, yes we have many of those, will have approximately 64,000 lbs of Al in the soil solution.  That’s a lot of competition for your fertilizer P and for any substance that is trying to protect it.

I have been testing “biologicals” of all shapes and forms since 2003.  While I have not hit any homeruns I have learned quite a bit.  Many of these products originate from up north where the weather is kind and organic matter (OM) is high.  Where I work the average OM is 0.75% and soil temp is brutal and unforgiving.  Our soil does not have many reserves to release nor is it hospitable to foreign bodies.

Soil temperature for Stillwater OK under sod and bare soil conditions.  Graph from www.Mesonet.org.

Soil temperature for Stillwater OK under sod and bare soil conditions. Graph from http://www.Mesonet.org.

I hope you are still hanging on as this next topic is a bit of a soap box for me.  Rate, Rate, Rate this aspect is missed both by producers and academia and it drives me crazy.  If your crop is sufficient in any growth factor adding more will not increase yield.  It goes back to Von Liebig’s LAW of the Minimum.  I see too many research studies in which products are tested at optimum fertilization levels.  This is just not a fair comparison.  On the other hand, time and again I see producers sold on a product because they applied 30% less N or P and cut the same yield.  If you let me hand pick 100 farms in Oklahoma I could reduce the N rate by 30% of the average and not lose a bushel on 75 of the farms.  Why? Because the rate being used was above optimum in the first place, there is no magic just good agronomy.  The list of products that increase the availability of nutrients is a mile long. Increasing nutrient availability is all well and good if you have a deficiency of one of those nutrients.  If you don’t, well you have increased the availability of something you did not need in the first place.

University researchers and extension professionals seem to live and die by the statistics, and are told so regularly. We do rely upon the significant differences, LSD’s, and etc to help us understand the likely hood of a treatment causing an effect.    However if I see a trend develop, or not develop, over time and landscape regardless of stats I will have no problem making recommendations.    The stats help me when I do not have enough information (replications).

Too wrap up, have a goal.  Do not just buy a product because of advertised promises or because a friend sells it.  There is a right time and place for most of the things out there, but you need to know what that is and if it suits your needs.  I also recommend turning to your local Extension office.  We do our best to provide unbiased information in hopes of making your operation as sustainable as possible.  If you are looking at making sizable investments do some reading, more than just Google.  Testimonies are great but should but should not be enough to cut a check. Google Scholar www.google.com/scholar is a good resource for scientific pubs.  I have done my best to put together a list of peer reviewed publications and their outcomes.  To make the review work I had to be very general about outcome of the research.  Either the product increased yield or decreased environmental losses or it had no impact.   This was not easy as many of the papers summarize multiple studies.  I did my best to make an unbiased recommendation but some could be argued.    http://npk.okstate.edu/Trials/products/Product_Peer_Review.8-21-2014.pdf

 

Follow me on Twitter

Follow

Get every new post delivered to your Inbox.

Join 36 other followers